
 

 

 

 

 
 

 

 

 

 

# 80000502-001 
 

 

 

 

ID TECH 

Encrypted Data Output  
 

 

Rev. G 

 

 
 

 

Revised 11/20/2017 
 

 

 

 

 

 

 

 

 

 

International Technologies & Systems Corporation 

10721 Walker Street, Cypress, CA 90630-4720; Tel: (714) 761-6368; Fax (714) 761-8880 

www.idtechproducts.com 

  



 

 
Page 2 of 55 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2016 by ID TECH. All rights reserved. 

 

 

 

  



 

 
Page 3 of 55 

 

  

 

Table of Contents 

 

 
SCOPE .................................................................................................................................................................... 5 

ENCRYPTION STANDARDS ................................................................................................................................................ 5 
KEY MANAGEMENT ........................................................................................................................................................ 6 
DECRYPTION ................................................................................................................................................................. 6 
TERMINOLOGY: MSR VS. EMV ........................................................................................................................................ 6 

GLOSSARY .............................................................................................................................................................. 7 

OUTPUT FORMAT OVERVIEW ................................................................................................................................ 8 

HIGH LEVEL OVERVIEW ................................................................................................................................................... 8 
NOTATIONAL CONVENTIONS ............................................................................................................................................ 8 

ID TECH ENHANCED ENCRYPTED MSR DATA OUTPUT FORMAT ............................................................................. 9 

FIELD DESCRIPTIONS ..................................................................................................................................................... 11 
Field 1: STX ......................................................................................................................................................... 11 
Field 2: Data Length ........................................................................................................................................... 11 
Field 3: Card Encode Type .................................................................................................................................. 11 
Field 4: Track Status ........................................................................................................................................... 12 
Field 5: Track1 data length ................................................................................................................................. 12 
Field 6: Track2 data length ................................................................................................................................. 12 
Field 7: Track3 data length ................................................................................................................................. 12 
Field 8: Clear/mask data sent status byte .......................................................................................................... 13 
Field 9: Encrypted data sent status .................................................................................................................... 13 
Field 10: Optional-bytes length .......................................................................................................................... 13 
Field 11: Optional status byte 1.......................................................................................................................... 14 
Field 12: Track1 clear/masked data ................................................................................................................... 14 
Field 13: Track2 clear/masked data ................................................................................................................... 14 
Field 14: Track3 clear/masked data ................................................................................................................... 14 
Field 15: Track1 encrypted data ......................................................................................................................... 15 
Field 16: Track2 encrypted data ......................................................................................................................... 15 
Field 17: Track3 encrypted data ......................................................................................................................... 15 
Field 18: Session ID (Security level 4 only) .......................................................................................................... 16 
Field 19: Track1 hash (if encrypted and hash track1 allowed) ........................................................................... 16 
Field 20: Track2 hash (if encrypted and hash track2 allowed) ........................................................................... 16 
Field 21: Track3 hash (if encrypted and hash track3 allowed) ........................................................................... 16 
Field 22: Reader Serial Number (optional) ......................................................................................................... 16 
Field 23: KSN (DUKPT only) or Key ID (TransArmor). .......................................................................................... 16 
Field 24: MAC Value Length ............................................................................................................................... 17 
Field 25: MAC Value ........................................................................................................................................... 17 
Field 26: 10 bytes KSN for MAC DUKPT Key. ...................................................................................................... 18 
Field 27: CheckLRC .............................................................................................................................................. 18 
Field 28: CheckSum............................................................................................................................................. 18 
Field 29: ETX ....................................................................................................................................................... 18 



 

 
Page 4 of 55 

 

SAMSUNG PAY/MST SUPPORT ...................................................................................................................................... 19 
CARD TYPE ................................................................................................................................................................. 19 
ISO/ABA CARD .......................................................................................................................................................... 20 
JIS CARD OUTPUT ........................................................................................................................................................ 21 
MSR DATA EXAMPLES ............................................................................................................................................. 21 

Example: MSR Output from a USB-HID/RS-232/UART Interface ........................................................................ 22 
Example: MSR Output from USB KB and PS/2 Interface, Format 1 .................................................................... 24 
Example: MSR Output USB HID/RS232/UART Interface, Format 2 .................................................................... 26 
Example: Enhanced Manual Entry Output Format ............................................................................................ 28 
Example: Enhanced Manual Entry with ADR and ZIP Output ............................................................................ 29 
Example: MSR Output Format with TransArmor TDES-DUKPT .......................................................................... 30 

ENCRYPTED EMV DATA ........................................................................................................................................ 32 

Encrypted TLV Packaging: Method One ............................................................................................................. 32 
Encrypted TLV Packaging: Method Two ............................................................................................................. 33 

TAG ENCODING ........................................................................................................................................................... 34 
LENGTH BYTE SEMANTICS .............................................................................................................................................. 34 
TLV ENCRYPTED RESPONSE FORMAT EXAMPLES ................................................................................................................ 38 

Configuration Note ............................................................................................................................................. 39 
Tag5A Value Mask Configuration Note .............................................................................................................. 39 
MAC Verification Data / KSN TLV Format .......................................................................................................... 46 
DFEF48 (Insufficient RAM) Examples ................................................................................................................. 48 

APPENDIX A: TAGS DFEF4B, DFEF4C, & DFEF4D ................................................................................................... 50 

TAG DFEF4B.............................................................................................................................................................. 50 
DATA SEARCH ORDER ................................................................................................................................................... 51 
COMPRESSED NUMERIC ELEMENTS ...................................................................................................................... 52 
TAG DFEF4C.............................................................................................................................................................. 52 
TAG DFEF4D ............................................................................................................................................................. 52 

 

  



 

 
Page 5 of 55 

 

SCOPE 

The intent of this document is to explain encoding rules as they apply to transaction data 

produced by ID TECH payment peripherals that perform encryption.  

 

Data encodings, in ID TECH products, take two major forms, depending on whether the 

transaction stems from a magstripe read (MSR) or a chip-card (ICC/EMV) interaction. The 

two major formats are described in detail here. Data from magstripe transactions will be in 

the Enhanced Encrypted MSR format. Data from ICC (chip card) transactions will be in a 

TLV-based format as described in the section on Encrypted EMV Data. Magstripe data 

(MSD) constructed from contactless interactions are treated as EMV data. 

 

Once a device has been key-injected and encryption-enabled, no sensitive transaction data 

will ever be sent in the clear. Non-sensitive data (such as the KSN) continues to be sent in the 

clear. The purpose of this document is to allow you to know which segments of data are 

encrypted, and which segments are not encrypted.  

 

ID TECH offers a Universal SDK that greatly facilitates data parsing. If you can do so, we 

strongly recommend you use the Universal SDK to obtain and manipulate data objects 

programmatically (in Java or C#).  

 

Encryption Standards 

The two industry-standard encryption methods supported by ID TECH products are Triple 

DES (TDES) and AES. (Depending on customer choice, a given product will support one or 

the other of these two algorithms, but not both at once.) Triple DES assumes a block size of 8 

bytes; therefore, any data that will be TDES-encrypted will be zero-padded to a length that is 

a multiple of 8 before encryption. AES assumes a block size of 16 bytes. Data will be padded 

to a multiple of 16 bytes before AES encryption. For both encryption algorithms, cipher 

block chaining (CBC) is the default mode used in ID TECH products. The initial vector 

(where applicable) is all nulls. 

 

No attempt is made here to document TDES or AES encryption methods, since they are 

industry standards not maintained by ID TECH.  

 

For information on TDES, see NIST Special Publication 800-67, Recommendation for the 

Triple Data Encryption Algorithm (TDEA) Block Cipher, available at the following URL: 

http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf 

 

For information on AES, see FIPS-197, available at: 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf  

 

Some ID TECH products support the First Data TransArmor encryption methodology, which 

uses RSA-based public/private key technology. For information on the TransArmor 

methodology, see https://www.firstdata.com/downloads/marketing-merchant/TransArmor-

FAQs.pdf and/or contact First Data Corp. (https://www.firstdata.com). 

http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.firstdata.com/downloads/marketing-merchant/TransArmor-FAQs.pdf
https://www.firstdata.com/downloads/marketing-merchant/TransArmor-FAQs.pdf
https://www.firstdata.com/


 

 
Page 6 of 55 

 

 

 

 

Key Management 

The key management methodology used in ID TECH products that support encryption is 

predominantly DUKPT (Derived Unique Key Per Transaction). DUKPT results in a unique 

16-byte key for every transaction. The same 16-byte key may be used to encrypt or decrypt 

data using either TDES or AES. (In other words, the choice of key management technology 

has nothing to do with the choice of encryption technology.) The 10-byte Key Serial Number 

(KSN), unique for every transaction, is essential for deriving DUKPT keys.  

 

A full discussion of DUKPT key management methodology is beyond the scope of this 

document. For details, refer to ANSI X9.24 Part 1, Retail Financial Services Symmetric Key 

Management Part 1: Using Symmetric Techniques:  . 

 

 

Decryption 

ID TECH card readers do not provide decryption capability in firmware. Decryption of 

transaction data is usually done on the back end (by the party that will approve and/or clear a 

transaction). It can also be done in a test environment. But is not typically done in an 

application, at transaction time, in a live production environment, because the storage or 

transmission of sensitive customer data in cleartext form runs counter to PCI DSS 

requirements (and constitutes a "worst practice," in security terms).  

 

Still, you'll probably want to decrypt data for test/validation purposes. Decryption involves 

deriving the "working key" (or session key) associated with the data, and then submitting the 

key and data to the appropriate decryption algorithm. Deriving a one-time key using DUKPT 

is a somewhat intricate process. ID TECH makes available a decryption tool (at 

http://www.idtechproducts.com/tooling/file) that can derive keys using DUKPT, and decrypt 

data via TDES or AES. The tool is written in HTML and JavaScript, and uses open-source 

TDES and AES implementations. You may wish to look at the source code in that tool, if 

you want to see how DUKPT key derivation and decryption can be done.  

 

Terminology: MSR vs. EMV 

Throughout this document, the terms "magnetic stripe data," "magstripe data," and "MSR 

data" are considered synonymous.  

 

ICC transactions are generally either "contact" (“insert") transactions, or "contactless” (“tap") 

transactions. Throughout this document, we will refer to both contact and contactless as 

"EMV transactions." Likewise, we will sometimes refer to "EMV data" in the context of 

transaction data stemming from  ICC or NFC interactions. 

 

Magstripe data (MSD) constructed from contactless interactions are treated as EMV data. 

http://www.idtechproducts.com/tooling/file


 

 
Page 7 of 55 

 

 

Manually entered transactions (where the card number, expiration date, etc., are typed into a 

keypad) are treated as MSR data.  

 

 

GLOSSARY 

AES Advanced Encryption Standard, FIPS-197 

CheckLRC See LRC below 

CheckSum Arithmetic sum of data bytes, ignoring overflow 

CVV Card Verification Value 

DES Data Encryption Standard 

DUKPT Derived Unique Key Per Transaction 

EMV Europay, MasterCard, Visa standards 

ETX End of Text, 0x03 

EXP Expiration Date 

ICC Integrated Circuit Card (chip card) 

KSN Key Serial Number 

LRC Longitudinal redundancy check (XOR of data bytes) 

MSD Magnetic Stripe Data (may come from contactless interaction) 

MSR Magnetic Stripe Read (comes from physical read of magnetic stripe) 

NFC Near Field Communication 

PAN Primary Account Number 

RFU Reserved for Future Use 

SHA Secure Hash Algorithm 

STX Start of Text, 0x02 

TDES Triple DES (Triple Data Encryption Standard) 

TLV Tag/length/value 

XOR Exclusive-OR 

  



 

 
Page 8 of 55 

 

 

 

OUTPUT FORMAT OVERVIEW 

 

High Level Overview 

 

The transaction data produced by ID TECH products will differ in format depending on the 

device, the mode of the device, and the type of transaction (e.g., magstripe versus ICC 

contact, versus ICC contactless). This document assumes that the device in question is 

operating in an encryption-enabled mode. The determining factor in how encrypted data 

payloads are constructed is whether data originated from a magnetic stripe read, or not.  

 

Magstripe transactions produce data encoded according to ID TECH's Enhanced Encrypted 

MSR Format (see below), which is a 29-field format (with some fixed-length fields and some 

variable-length fields) that can't be fully described without also describing field semantics. 

By contrast, chip-card transactions on EMV-capable ID TECH devices produce "EMV data" 

payloads that are predominantly constructed as unordered sets of TLV triplets, or so-called 

"tag/length/value" data. Because of the way TLV payloads are constructed, it's possible to 

talk about data structure without having to know about data semantics. In this document, we 

will focus on data structure whenever possible. ASN.1-BER encoding rules for tags are 

briefly discussed, but actual tag semantics are not. For information about EMV tag 

semantics, consult the EMV documentation at https://www.emvco.com. 

 

This document purposely avoids discussion of protocols in order to concentrate on formats. 

Nevertheless, it should be mentioned that depending on the protocol used, data may come 

back "wrapped" in various kinds of wrappers. For example, ViVOPay devices will prepend 

encrypted data payloads with a 14-byte header or preamble consisting of the 10-byte string 

"ViVOtech2\0" followed by a command byte, status code, and two length bytes (MSB, LSB). 

Most other devices adhere to a simple protocol that encloses data in a wrapper that begins 

with STX (0x02) and length bytes, and ends with LRC (longitudinal redundancy check bytes: 

XOR of the payload), 8-bit checksum, and ETX (0x03). Please consult the appropriate ID 

TECH Interface Developer's Guide (IDG) or the appropriate product User's Manual for more 

information on protocol-specific data packagings. 

 

 

Notational Conventions 

When bytes are described in terms of bits, we use zero-based numbering of bits: B0 is the 

least significant bit and B7 is the most significant bit. 

 

MB          LB 

B7 B6 B5 B4 B3 B2 B1 B0 

https://www.emvco.com/


 

 
Page 9 of 55 

 

 

Hex values are denoted in various ways: 02h, 'H'02, 0x02 (all equivalent).  

 

 

 

ID TECH ENHANCED ENCRYPTED MSR DATA 

OUTPUT FORMAT 

For ID TECH products that can read magnetic stripe data, "encrypted output" conforms to a 

29-field data format as described below, known as the ID TECH Enhanced Encrypted MSR 

Data Output Format. 

 

Payloads of the "Enhanced Encrypted MSR" type are constructed as shown in the following 

two tables. The first table is for conventional card-swipe data; the second table is for manual-

entry data that occurs when a card number is typed into a keypad (during a Card Not Present 

transaction).  

 

Take care to note that some data fields are variable-length, and some may not occur at all. 

For example, Fields 10 and 11 are optional. To determine whether they exist, you will need 

to examine bit 6 of Field 4 (as discussed further below).   

 

MSR DATA OUTPUT FORMAT 

Field 

# 

Length in 

Bytes 

Optional Field Name 

1 1  STX 

2 2  Data Length 

3 1  Card Encode Type 

4 1  Track Status 

5 1  Track1 data length 

6 1  Track2 data length 

7 1  Track3 data length 

8 1  Clear/mask data sent status 

9 1  Encrypted/Hash data sent status 

10 1 Y Optional bytes length 

11 Variable Y Optional bytes 

12 Variable Y Track1 clear/mask data  

13 Variable Y Track2 clear/mask data  

14 Variable Y Track3 clear/mask data  

15 Variable Y Track1 encrypted data  

16 Variable Y Track2 encrypted data  

17 Variable Y Track3 encrypted data  



 

 
Page 10 of 55 

 

18 8 Y TransactionID (Session ID for Security level 4, 

Terminal/Merchant ID for TransArmor) 

19 20 Y Track1 hashed 

20 20 Y Track2 hashed 

21 20 Y Track3 hashed 

22 10 Y Reader Serial Number 

23 Variable Y KSN or Key ID (10 bytes KSN for DUKPT, 10 bytes Key 

ID for fixed key, 11 bytes Key ID for TransArmor) 

24 2 Y MAC Value length 

25 Variable Y MAC Value  

26 10 Y KSN for MAC DUKPT 

27 1  LRC 

28 1  CheckSum 

29 1  ETX (0x03) 

 

MANUAL ENTRY DATA OUTPUT FORMAT 

Field 

# 

Length in 

Bytes 

Optional Field Name 

1 1  STX (0x02) 

2 2  Data Length 

3 1  Card Encode Type (0xC0) 

4 1  Track Status (0x17 or 0x37) 

5 1  Track1 data length (0x00) 

6 1  Length of unencrypted ;PAN= EXP [:CVV]?LRC 

7 1  Length unencrypted additional data ZIP and/or ADR 

8 1  Clear/mask data sent status 

9 1  Encrypted/Hash data sent status 

10 1 Y Optional bytes length 

11 Variable Y Optional bytes 

12 0  Empty  

13 Variable Y Keyed-in data presented as track 2—

;PAN=EXP[:CVV]?LRC 

14 Variable Y Additional keyed-in data in ASCII presented as track 3 

[1ADR=][0ZIP=] 

15 0  Empty  

16 Variable  Encrypted data  

17 0  Empty  

18 8 Y TransactionID (Session ID for Security level 4, 

Terminal/Merchant ID for TransArmor) 

19 0  Empty 

20 20 Y Hashed (present by default) 

21 0  Empty 



 

 
Page 11 of 55 

 

22 10 Y Device Serial Number (not present by default) 

23 Variable Y Key ID (10 bytes KSN for DUKPT, 10 bytes Key ID for 

fixed key, 11 bytes Key ID for TransArmor) 

24 2 Y MAC Value Length 

25 Variable Y MAC Value 

26 10 Y KSN for MAC DUKPT 

27 1  LRC 

28 1  CheckSum 

29 1  ETX (0x03) 

 

 

Field Descriptions 

Field 1: STX 

Start of Text. 0x02 for most products (0x60 for Spectrum Air and SecureMOIR). 

Field 2: Data Length 

Two bytes, little-endian, representing the length of the data payload (which does not 

include the LRC, checksum, nor ETX, nor the leading STX, nor the length bytes 

themselves). In other words, the layout is: 

 

STX LenL LenH Payload LRC SUM ETX 
 

The length bytes specify the length of the Payload portion only.  

 

Field 3: Card Encode Type 

Value  Encode Type Description 

80 ISO 7813/ISO 4909/ABA format 

81 AAMVA format  

83 Other  

84 Raw; un-decoded format. All tracks are encrypted and no masked data are sent. 

No track indicator ‘01’, ‘02’ or ‘03’ in front of each track. 

85 JIS II Only supported in some products. 

86    JIS I Only supported in some products. 

87 JIS II SecureKey and Secure MIR. 

91        Contactless Visa (Kernel 1) 

92        Contactless MasterCard 

93        Contactless Visa (Kernel 3) 

94        Contactless American Express 



 

 
Page 12 of 55 

 

95        Contactless JCB 

96        Contactless Discover 

97        Contactless UnionPay 

90        Contactless Others 

 C0 Manual entry enhanced mode (similar to ABA track 2).  

  

 Values without the high bit set are reserved. 

 

 

Field 4: Track Status 

 

MSR sampling and decode status flags: 

 

MB          LB 

0 0 B5 B4 B3 B2 B1 B0 

 

B0 1: Track 1 decode success (0: Track 1 decode fail)  

B1 1: Track 2 decode success (0: Track 2 decode fail) 

B2 1: Track 3 decode success (0: Track 3 decode fail) 

B3 1: Track 1 sampling data exists (0: Track 1 sampling data does not exist) 

B4 1: Track 2 sampling data exists (0: Track 2 sampling data does not exist) 

B5 1: Track 3 sampling data exists (0: Track 3 sampling data does not exist) 

 B6 1: Field 10 “optional bytes length” exists (0: No Field 10) 

 B7 0—reserved for future use 

 

 

Field 5: Track1 data length 

Field 6: Track2 data length 

Field 7: Track3 data length 

These one-byte values are the lengths of the actual (raw, unencrypted) Track data. It 

indicates the number of bytes in the Track masked data fields (Fields 12, 13, 14). It 

should be used to separate Track 1, Track 2 and Track 3 data after decrypting Track 

encrypted data field.  

 

For ISO 7813 and ISO 4909 compliant Financial Transaction Cards: 

Track 1 maximum length is 79 alphanumeric characters. 

Track 2 maximum length is 40 numeric digits. 



 

 
Page 13 of 55 

 

Track 3 maximum length is 107 numeric digits. 

 

Field 8: Clear/mask data sent status byte 

 

 Bit 0: 1— if Track1 clear/mask data present  

 Bit 1: 1— if Track2 clear/mask data present 

 Bit 2: 1— if Track3 clear/mask data present 

 Bit 3: 1— if fixed key; 0 DUKPT Key Management  

 Bit 4: 0 — TDES; 1 — AES 

Bit 5: 1— Chip present on card. (First byte of service code was '2' or '6'.) Use EMV 

transaction if possible. 

Bit 6: 1— PIN Encryption Key; 0—Data Encryption Key  

                 Refer to ANSI X9.24 2009 Page 56 for details. 

 Bit 7: 1 — Serial Number present; 0—not present 

 

 Field 9: Encrypted data sent status 

 Bit 0: if 1—track1 encrypted data present  

 Bit 1: if 1—track2 encrypted data present 

 Bit 2: if 1—track3 encrypted data present 

 Bit 3: if 1—track1 hash data (SHA digest) present 

 Bit 4: if 1—track2 hash data (SHA digest) present 

 Bit 5: if 1—track3 hash data (SHA digest) present 

 Bit 6: if 1—session ID present  

 Bit 7: if 1—KSN present 

 

Field 10: Optional-bytes length 

Number of optional bytes in Field 11. This field exists if and only if bit 6 of Field 4 is 

turned on. 

 

Rationale: This field (Field 10) is present if, and only if, Bit 6 of Field  4 is turned on. 

The need for this scheme arises because originally, ID TECH products used a 160-bit 

SHA-1 digest in "hashed track data" of fields 19, 20, and 21. Later products were 

required to support a 32-byte (256-bit) SHA-2 digest. The purpose of the bit-6 flag in 

Field 4 is to signal whether the hashed track data fields use the original SHA-1 

encryption (flag is zero) or the longer SHA-2 digest (flag is set). If the flag is set, Field 10 

contains the length of Field 11, and Field 11 contains data specifying the type of hash. 

(Fields 10 and 11 provide an extensibility mechanism in case other SHA digest sizes need 

to be supported in the future.) 

 



 

 
Page 14 of 55 

 

Field 11: Optional status byte 1 

 Bit 0: If 1—SHA-256. If 0—SHA-1 (Note: SHA-1 is the default if no Field 11.) 

Bit 1: If 1—Encryption type follows Field 11 bit 2 &3 &4. If 0—Encryption type 

follows Field 8 bit 4.  

Bit 4, 3, 2: 000—TransArmor. 001—Voltage. 010—Visa FPE. 011—Verifone FPE. 

100—TransArmor TDES. 

Bit 5:   If 1— MAC Value Length, MAC Value, and MAC Key KSN will exist in Fields 

24, 25 and 26. 

  If 0— No MAC Value Length, MAC Value and MAC Key KSN in Field 24, 25 

and 26. 

Bit 6: RFU 

Bit 7: RFU  

  

 

 

Field 12: Track1 clear/masked data  

Field 13: Track2 clear/masked data  

Field 14: Track3 clear/masked data  

 

For MSR: Track data masked with the MaskCharID (default is ‘*’). The first PrePANID 

(up to 6 for BIN, default is 4) and last PostPANID (up to 4, default is 4) characters can be 

in the clear (unencrypted).  

 

For Manual Input: 

Field 12 is always empty. 

Field 13 includes PAN, EXP ( in YYMM format) and (CVV) always masked. 

The format should be:  

1) ;PAN=YYMM[:CVV]?LRC 

‘;’—start sentinel 

‘=’—field separator between PAN and EXP 

‘:’—field separator between EXP and CVV if there is a CVV 

‘?’—end sentinel 

By default, the least significant digit of PAN is checked against the PAN with the 

MOD 10 algorithm. 

LRC—calculated track 2 longitudinal redundancy check from ';' to '?' 



 

 
Page 15 of 55 

 

This LRC is calculated on the raw data before conversion to ASCII as it would be 

encoded on a card, so that the keyed-in data can be checked identically to the card 

data. 

The PAN is 12 to 19 digits; the EXP is 4 digits; and the CVV is 3 or 4 digits. 

 

- For Field 14: The format of the fields ADR and ZIP is: 

1 byte field identifier 

‘1’—ADR; ‘0’—ZIP 

ASCII Data field terminator ‘=’ 

The maximum number of ADR digits is 20. 

The maximum number of ZIP digits is 10. 

Example: if address is 5555 and ZIP is 99999 15555=099999= 

 

Field 15: Track1 encrypted data  

Field 16: Track2 encrypted data  

Field 17: Track3 encrypted data  

These fields are the encrypted Track data, using either TDES-CBC or AES-CBC with 

initial vector of 0. If the original data length is not a multiple of 8 bytes for TDES or a 

multiple of 16 bytes for AES, the reader right pads the data with 0 before encryption. 

 

The key management scheme is DUKPT. For DUKPT, the key used for encrypting data 

is called the Data Key. The Data Key is generated by taking the DUKPT Derived Key 

exclusive OR’d (XOR'd) with 0000000000FF00000000000000FF0000 to get the 

resulting intermediate variant key. The left side of the intermediate variant key is then 

TDES encrypted with the entire 16-byte variant as the key. After the same steps are 

performed for the right side of the key, combine the two 8-byte key parts to create the 16-

byte Data Key. 

 

Tracks 1, 2 and 3 data are encrypted separately. In order to get the number of bytes for 

each track's encrypted data field, the field length is always a multiple of 8 bytes for TDES 

or multiple of 16 bytes for AES, rounding up as necessary. This length value will be zero 

if there was no data on a track. Once the encrypted data are decrypted, all padding bytes 

need to be removed. The number of bytes of decoded (native) track data is indicated by 

the track's unencrypted length field as given in Fields 5, 6, and 7. 

 

NOTE: For TransArmor encryption, the field length of each encrypted track is 344 bytes. 

 



 

 
Page 16 of 55 

 

Field 18: Session ID (Security level 4 only) 

At the time of this writing, no ID TECH product implements Security Level 4. Hence, 

Session ID is not used, but this field will contain Terminal/Merchant ID if TransArmor 

crypto is enabled. 

 

Field 19: Track1 hash (if encrypted and hash track1 allowed) 

Field 20: Track2 hash (if encrypted and hash track2 allowed) 

Field 21: Track3 hash (if encrypted and hash track3 allowed) 

The hash is used for non-SRED products; for SRED products, either all zeroes are used 

(20 bytes of 00), or the hash is 32 bytes of SHA-256. Refer to product manual for details. 

The hash may be 20 bytes (SHA-1) or 32 bytes (SHA-256) in length. To determine which 

kind of hash is present, see the discussion of bit 6, Field 4, and also the discussion under 

Field 10 & 11, above. 

 

SHA-1 (160-bit digest) is used by default to create a 20-byte hash of the data for track 1 

to track 3 raw data. The hash is exactly 20 bytes long for each track. This is provided 

with two purposes in mind: One is for the host to ensure data integrity by comparing this 

field with a SHA-1 hash of the decrypted Track data, allowing the detection of corruption 

in data transmission. The other purpose is to enable the host to store a tokenized version 

of card data for future use without keeping the sensitive cardholder data in plaintext form. 

The token may be used for comparison with the stored hash data to determine if they are 

from the same card. 

 

SHA-256 is another option for the hash; this type of hash is 32 bytes long for each track.  

 

Field 22: Reader Serial Number (optional)  

Always 10 bytes (pad with leading 0x30 if  <10 digits). 

 

Field 23: KSN (DUKPT only) or Key ID (TransArmor). 

Key ID (10 bytes KSN for DUKPT, 10 bytes Key ID for fixed key, 11 bytes Key ID for 

TransArmor). 

 



 

 
Page 17 of 55 

 

Field 24: MAC Value Length 

Data Length (two bytes: low byte comes first, aka "little endian"). This field will not exist unless 

Field 11 exists and Bit 5 is set in that field. 

 

This value is commonly 10 00. 

 

Field 25: MAC Value 

If it exists, this field is used to verify the integrity and authority of the MSR data message; 

authenticated message is from Field 3 to 24. (The length of MAC Value is defined in Field 24.) 

This field will not exist unless Field 11 exists and Bit 5 is set in that field. 

 

This field contains the HMAC result (the 16-byte digest) used to authenticate messages sent from 

Device to Host. The hash algorithm used here is SHA-256, but only the first 16 bytes of the 

result are kept. 

 

MAC-Device = HMAC (MAC_KEY, msgX) 

 

Following this field is the MAC_DUKPT_KEY_KSN. 

 

The MAC-Device will be the last field in a MAC-authenticated message, and msgX (the payload 

that is hashed) will contain everything from the firstt byte of message being built (Response Data 

+ MAC Value Length) up to, but not including, the MAC-Device first byte. 

 

NOTE: Advancing the KSN is controlled by the device. 

 

The hash algorithm is known as HMAC (RFC 2104) and is given by: 

 

HMAC(K', msgX) = H ((K' ⊕ opad) | H((K' ⊕ ipad) | msgX)) 

 

Use HMAC-SHA256 (Refer to RFC 2104); but retain only the first 16 bytes of the calculation 

for MAC Authentication. 

  

In the above formula: 

H is a cryptographic hash function, 

K' is the current MAC Key padded to the right with extra zeros to the input block size of 

the hash function, or the hash of the original key if it's longer than that block size, 

m is the message to be authenticated, 

| denotes concatenation, 

⊕ denotes XOR, 

opad is the outer padding (0x5c5c5c…5c5c, one-block-long hexadecimal constant), 

ipad is the inner padding (0x363636…3636, one-block-long hexadecimal constant). 

 



 

 
Page 18 of 55 

 

Field 26: 10 bytes KSN for MAC DUKPT Key.  

This field will not exist unless Field 11 exists and Bit 5 is set in that field. 

 

 

Field 27: CheckLRC 

XOR of all data from Card Encode Type (Field 3) to end of KSN for most ID TECH 

products; XOR of all data before CheckLRC for SecureMOIR and Spectrum Air. 

Field 28: CheckSum   

Sum of all data from Card Encode Type (Field 3) to end of KSN. Use the bottom 8 bits 

only. Disregard overflow. 

Field 29: ETX 

End of Text: 0x03.  

 

 

Notes 

 

Force Encryption 

Force Encryption is a device setting. When Force Encrypt is set, the track will always be 

encrypted, regardless of card type. No clear/mask data (Field 10, 11 and 12) will be sent. 

When Force Encrypt is not set, only ABA bank cards (ISO 7813 and 4909 card) or Raw 

card data will be encrypted. 

 

Handling of Purposely Reading Cards Incorrectly 

In order to prevent bank card data from being transmitted if the card is not swiped firmly 

bottomed in the slot, a card that meets the above requirements, but has the track data 

shifted up one or two tracks, can also be rejected. That is, if Track 1 data appears as 

Track 3 data or Track 1 data appears as Track 2 data or Track 1 data appears as Track 2 

data and Track 2 data appears as Track 3 data, the card may be rejected rather than being 

sent unencrypted. This support is only necessary and available on swipe readers. 

 

Ignoring tracks 

The reader can be set to ignore one or more tracks. That is, the track is not analyzed (nor 

sent) so that for purposes of encryption determination it can be ignored. 

 



 

 
Page 19 of 55 

 

Samsung Pay/MST Support 

Samsung Pay/MST (LoopPay) is designed to broadcast a magnetic signal to magnetic 

head. But because this happens contactlessly (devices separated by a centimeter or two), 

there is no physical mechanism by which to detect the origin of track data with respect to 

physical Track 1, physical Track 2, etc. So microcontrollers will receive magnetic signals 

on all tracks.  

 

If a device receives identical MSR data on multiple tracks, it will ignore Track 2 and 

Track 3 data if card data is ISO 7-bit-encoded (treating such data as Track 1 data only) 

and ignore Track 1 and Track 3 data if card data is ISO 5-bit-encoded encoding (treating 

it as Track 2 data only). 

 

ID TECH stripe readers will follow the ISO/ABA financial card checking algorithm 

below to decide card type, encryption, and data masking. 

 

Card Type 

          Card Type 80 Cards meeting the conditions below are always encrypted following an 

ISO/ABA (American Banking Association) Card Encoding method. 

 

Card Type 81 (Not encrypted unless a track is forced to be encrypted.) 

AAMVA (American Association of Motor Vehicle Administration) Card 

Encoding method. 

Track1 is 7-bit encoded. Track2 is 5-bit encoded. Track3 is 7-bit. 

 

Card Type 83 (Not encrypted unless a track is forced to be encrypted.) 

Card has a nonstandard format, e.g. 7-bit character data on track 2. 

 

Card Type 84 card where the reader is in raw mode: always encrypted 

Any card in raw format (that is, where the reader does not decode the track data but rather 

sends the track data to the host without interpretation) is never sent masked and is always 

encrypted, because the reader never did any track data interpretation. 

 

Card Type 85 (Not encrypted unless a track is forced to be encrypted.) 

JIS II 8 8 0 (wide track, send Track 2 only, 080). 

 

Card Type 86 (Not encrypted unless a track is forced to be encrypted.) 

JIS I bits per track on Track 1 or Track 3: 858 855 850 758 

 

Card Type 87 (Not encrypted unless a track is forced to be encrypted.) 

JIS II 8 8 0 (wide track, send track 2 only, 080).  

It has been used for SecureKey and Secure MIR. A compatible setting is available to use 

Card Type 85 for JIS II. 

New Products will use Card Type 85 for JIS II. 

 



 

 
Page 20 of 55 

 

Card Type C0  

Manual Key-in card data. 

 

ISO/ABA Card 

Only cards encrypted by default are Card Type 0 (bank card format cards). If the reader is 

so configured, the unusual card type 4 raw format may exist (where the reader is set to 

not decode and interpret the cards but leave them in the same format as written to the 

card). Only bank cards send out masked data. 

 

Below is the algorithm used to check bank cards. 

 

 ISO/ABA (American Banking Association) Card Type 0 (bank cards): 

The first character, the start sentinel, is a ';' on 5-bit/character tracks, and a '%' 

on 7-bit/character tracks. To be a valid track, the track must have a valid start 

sentinel, end sentinel, and longitudinal redundancy check character; and the 

parity on each character must be valid. Any track with 16 or fewer bits of data 

is invalid, the data are treated as noise. 

 

Encoding method: 

Track1 is 7-bit encoding and it was the only track decoded. 

Track1 is 7-bit encoding. Track2 is 5-bit encoding and Track 3 was not 

decoded.  

Track1 is 7-bit encoding, Track2 is 5-bit encoding, and Track3 is 5-bit 

encoding. 

Track1 is 7-bit encoding, Track3 is 5-bit encoding, and Track 2 was not 

decoded. 

Track2 is 5-bit encoding and neither track1 nor track3 was decoded. 

Track2 is 5-bit encoding, track3 is 5-bit encoding, and track 1 was not 

decoded. 

Track3 is 5-bit encoding and neither track 1 nor 3 was decoded. 

The reasons a track could be not decoded are it was not a valid 5-bit per 

character track, 7-bit per character track; 8-bit per character track; or the 

reader was told to ignore that track, or the track had insufficient bits to be a 

valid track.  

 

Additional ABA Card Checks 

On a track, the first field separator is used to indicate the end of the PAN 

(Primary Account Number). The field separator on a 5-bit/character track is '=' 

and on a 7-bit/character track is caret: '^'. 

Track1 second byte is ‘B’.  

There is a ‘=’ in track 2 so the account number length is 12-19 digits. 

There is a '^' on track 1 so the account number length is 12-19 digits (excluding 

spaces). 

Total length of track 1 is above 21 characters. 



 

 
Page 21 of 55 

 

Expiration date can be missing if there is a separator ‘^’ or ‘=’ replacing the 

first digit of the expiration date. 

 

Track3 ISO-4909 (with PAN) checking  

1.Track1 and Track2 should be in bank card format (Card Type 0, as checked 

above) or absent. 

2. Track3 second and third characters are “01”,”02” or “90” – “99” 

3. Track3 PAN is 12 to 19 digits. The field separator is ‘=’ 

4.Track3 total length is from 67 to 107 characters inclusive. 

Note: Expiration date starts 36 characters (or optionally 34 characters) 

downstream of the first ‘=’. 

 

JIS Card Output  

Below is ID TECH's standard output for JIS clear and encrypted output format. 
 

 USB KB or PS/2 Interface 

SS, ES and LRC default for JIS track data L1, L3 mask and L3: encryption is none 

(0x00), i.e. not sending out SS, ES and LRC. 

JIS is not recognized as ISO financial card; it will not be encrypted unless Force 

Encryption is on (no masked data). 

 

 Other Interfaces 

For other interface (RS232, CDC, HID, SPI), SS, ES and LRC will be sent as is. 

LRC default is off on L1. 

LRC in L3 masked data is on. 

LRC in L3 encrypted data is on. 

 

 

MSR DATA EXAMPLES 

Data formats vary by device model. Most USB-HID and RS-232/UART card readers follow the 

Enhanced Encrypted MSR format as described above. Those devices output binary data 

(represented as hex). Some USB-KB and PS2 insert readers output a format that mixes ASCII 

data (for Tracks 1, 2, and 3) with binary data. See examples to follow. 

 

All the data will be in hex format for RS-232, USB CDC, and USB-HID interface: e.g. ETX will 

be output as H'03'. 

 

All the data except Track1/2/3 clear/mask data will be in hexadecimal format for keyboard 

interface; e.g STX will be in two hexadecimal byte '0' (H'30') and '2' (H'32'). TrackX clear/mask 

data is in ASCII format. e.g. '%' will be output as H'25'. 

  



 

 
Page 22 of 55 

 

 

For PS2 and USB-KB interface readers, up to 15 bytes prefix and postfix can be added to the 

output. This is a settable feature. By default, prefix and postfix are set to none. 

 

For PS2 and USBKB interface readers, the Data Length, CheckLrc and CheckSum calculations 

are based on final output bytes, excluding prefix and postfix. 

Example: MSR Output from a USB-HID/RS-232/UART Interface 

 

The data in this example are encrypted using the Enhanced Encryption MSR Format. 

This can be recognized because the high bit of the fourth byte underlined (80) is 1. 

 

USB-HID / RS-232 / UART output format: 

 
029801803F48236B03BF252A343236362A2A2A2A2A2A2A2A393939395E425553

48204A522F47454F52474520572E4D525E2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A

2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A3F2A3B343236362A2A2A2A2A2A2A2A39

3939393D2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A3F2ADA7F2A52BD3F6DD8B96C50

FC39C7E6AF22F06ED1F033BE0FB23D6BD33DC5A1F808512F7AE18D47A60CC3F4

559B1B093563BE7E07459072ABF8FAAB5338C6CC8815FF87797AE3A7BEAB3B10

A3FBC230FBFB941FAC9E82649981AE79F2632156E775A06AEDAFAF6F0A184318

C5209E55AD44A9CCF6A78AC240F791B63284E15B4019102BA6C505814B585816

CA3C2D2F42A99B1B9773EF1B116E005B7CD8681860D174E6AD316A0ECDBC6871

15FC89360AEE7E430140A7B791589CCAADB6D6872B78433C3A25DA9DDAE83F12

FEFAB530CE405B701131D2FBAAD970248A456000933418AC88F65E1DB7ED4D10

973F99DFC8463FF6DF113B6226C4898A9D355057ECAF11A5598F02CA31688861

C157C1CE2E0F72CE0F3BB598A614EAABB16299490119000000000206E203 

 

STX, Length(LSB, MSB), captured data type, track status, length track 1, length track 2, length 

track 3, Clear/mask data sent status, Encrypted/Hash data sent status 

02 9801 80 3F 48-23-6B 03BF 

 

The above broken down and interpreted: 

02—STX character 

98—low byte of total length 

01—high byte of total length 

80—captured data type byte (interpretation: new format ABA card) 

3F—3 tracks of data all good 

48—length of track 1 

23—length of track 2 

6B—length of track 3 

03—tracks 1 and 2 have masked/clear data 

BF—bit 7=1—KSN included 

Bit 6=0—no Session ID included so not level 4 encryption 

Bit 5=1—track 3 hash data present 



 

 
Page 23 of 55 

 

Bit 4=1—track 2 hash data present 

Bit 3-1—track 1 hash data present 

Bit 2=1—track 3 encrypted data present 

Bit 1=1—track 2 encrypted data present 

Bit 0=1—track 1 encrypted data present 

 

Track 1 data masked (length 0x48) 

252A343236362A2A2A2A2A2A2A2A393939395E42555348204A522F47454F52474520572E

4D525E2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A

2A2A3F2A 

 

Track 1 masked data in ASCII 

%*4266********9999^BUSH JR/GEORGE W.MR^*******************************?* 

 

Track 2 data in hex masked (length 0x23) 

3B343236362A2A2A2A2A2A2A2A393939393D2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A3

F2A 

 

Track2 masked data in ASCII 

;4266********9999=***************?* 

 

In this example there is no Track 3 data, whether clear or masked (encrypted and hashed data are 

shown below). 

 

Track 1 encrypted length 0x48 rounded up to 8 bytes = 0x48 (72 decimal) 

DA7F2A52BD3F6DD8B96C50FC39C7E6AF22F06ED1F033BE0FB23D6BD33DC5A1F80851

2F7AE18D47A60CC3F4559B1B093563BE7E07459072ABF8FAAB5338C6CC8815FF87797A

E3A7BE 

 

Track 2 encrypted length 0x23 rounded up to 8 bytes =0x28 (40 decimal) 

AB3B10A3FBC230FBFB941FAC9E82649981AE79F2632156E775A06AEDAFAF6F0A18431

8C5209E55AD 

 

Track 3 encrypted length 0x6B rounded up to 8 bytes =0x70 (112 decimal) 

44A9CCF6A78AC240F791B63284E15B4019102BA6C505814B585816CA3C2D2F42 

A99B1B9773EF1B116E005B7CD8681860D174E6AD316A0ECDBC687115FC89360A 

EE7E430140A7B791589CCAADB6D6872B78433C3A25DA9DDAE83F12FEFAB530CE405

B701131D2FBAAD970248A45600093 

 

Track 1 data hashed length 20 bytes 

3418AC88F65E1DB7ED4D10973F99DFC8463FF6DF 

 

Track 2 data hashed length 20 bytes 

113B6226C4898A9D355057ECAF11A5598F02CA31 

 

Track 3 data hashed length 20 bytes 



 

 
Page 24 of 55 

 

688861C157C1CE2E0F72CE0F3BB598A614EAABB1 

 

KSN length 10 bytes 

62994901190000000002 

 

LRC, CheckSum and ETX 

06E203 

 

Clear/Masked Data in ASCII: 

Track 1: %*4266********9999^BUSH JR/GEORGE 

W.MR^*******************************?* 

Track 2: ;4266********9999=***************?* 

Key Value: 1A 99 4C 3E 09 D9 AC EF 3E A9 BD 43 81 EF A3 34 

KSN: 62 99 49 01 19 00 00 00 00 02 

 

Decrypted Data: 

Track 1 decrypted 

%B4266841088889999^BUSH JR/GEORGE W.MR^0809101100001100000000046000000?! 

Track 2 decrypted 

;4266841088889999=080910110000046?0 

Track 3 decrypted 

;33333333337676760707077676763333333333767676070707767676333333333376767607070

776767633333333337676760707?2 

Track 1 decrypted data in hex including padding zeros (but there are no pad bytes here) 

2542343236363834313038383838393939395E42555348204A522F47454F52474520572E4D52

5E303830393130313130303030313130303030303030303034363030303030303F21 

Track 2 decrypted data in hex including padding zeros 

3B343236363834313038383838393939393D3038303931303131303030303034363F300000000

000 

Track 3 decrypted data in hex including padding zeros 

3B333333333333333333333736373637363037303730373736373637363333333333333333333

337363736373630373037303737363736373633333333333333333333373637363736303730373

03737363736373633333333333333333333373637363736303730373F320000000000 

 

 

 

Example: MSR Output from USB KB and PS/2 Interface, Format 1 

 
02E102803F4F286F03BF%*4266********9999^BUSH JR/GEORGE 

W.MR^**************************************?*;4266********9999=*

*******************?*38E2F7E63C3CB4114881A50CAE7A0FBCD391AEE2551

7A8D98FB6A12B58B4F494C7849E9635DC9C22204884735B2624F4CCF2B7334EA

8C746E4E32EE462836445DA36611816B73C141F1F754B2D839A04B83FD38F070

EEC9BB401ED5A4079DB7A2928B92A4D16D8C3007B60D88F9C0C5E352719FD285



 

 
Page 25 of 55 

 

69447F20FC37CC789AED41A2FEAEBE48D5A48A1B456C15FC3271A0A8D5BE324A

4878BB3E7A61B1AF45E1E3A509329ED59D8C9A647676B725264864946E226B9C

970AED70C492313BCE0A4893014EDE3A7F4D0ECA8AFF50350CD9EE257F96B1D0

00AAB259D75D807B76A04AF0897E0A292B7C44D56DBB2AA6E57EFEDD08FF7123

426037AA6B19D4955D22FB7BA325CFA81ABAFB8F7ED9387C29B2D7BD32BDC792

7845B1E819C3DCB8623870619381862994901510000C00004439F03 

 

STX, Length(LSB, MSB), captured data type, track status, length track 1, length track 2, 

length track 3, Clear/mask data sent status, Encrypted/Hash data sent status  

02 E102 80 3F 4F-28-6F 03BF 

 

The above broken down and interpreted 

02—STX character 

E1—low byte of total length 

02—high byte of total length 

80—captured data type (interpretation: new format ABA card) 

3F—3 tracks of data all good 

4F—length of track 1 

28—length of track 2 

6F—length of track 3 

03—tracks 1 and 2 have masked/clear data 

BF— Bit 7=1—KSN included 

Bit 6=0—no Session ID included so not level 4 encryption 

Bit 5=1—track 3 hash data present 

Bit 4=1—track 2 hash data present 

Bit 3-1—track 1 hash data present 

Bit 2=1—track 3 encrypted data present 

Bit 1=1—track 2 encrypted data present 

Bit 0=1—track 1 encrypted data present 

 

Track 1 data masked (length 0x4F) 

%*4266********9999^BUSH JR/GEORGE 

W.MR^**************************************?* 

Track 2 data in hex masked (length 0x28) 

;4266********9999=********************?* 

 

In this example there is no Track 3 data whether clear or masked. (Encrypted and hashed data are 

shown below.) 

Track 1 encrypted length 0x4F rounded up to 8 bytes = 0x50 (80 decimal) 

38E2F7E63C3CB4114881A50CAE7A0FBCD391AEE25517A8D98FB6A12B58B4F494C7849

E9635DC9C22204884735B2624F4CCF2B7334EA8C746E4E32EE462836445DA36611816B7

3C141F1F754B2D839A04 

Track 2 encrypted length 0x28 rounded up to 8 bytes =0x28 (40 decimal) 

B83FD38F070EEC9BB401ED5A4079DB7A2928B92A4D16D8C3007B60D88F9C0C5E35271

9FD28569447 

Track 3 encrypted length 0x6F rounded up to 8 bytes =0x70 (112 decimal) 



 

 
Page 26 of 55 

 

F20FC37CC789AED41A2FEAEBE48D5A48A1B456C15FC3271A0A8D5BE324A4878BB3E

7A61B1AF45E1E3A509329ED59D8C9A647676B725264864946E226B9C970AED70C492313

BCE0A4893014EDE3A7F4D0ECA8AFF50350CD9EE257F96B1D000AAB259D75D807B76A

04AF0897E0A292B7C4 

 

Track 1 data hashed length 20 bytes 

4D56DBB2AA6E57EFEDD08FF7123426037AA6B19D 

Track 2 data hashed length 20 bytes 

4955D22FB7BA325CFA81ABAFB8F7ED9387C29B2D 

Track 3 data hashed length 20 bytes 

7BD32BDC7927845B1E819C3DCB86238706193818 

KSN length 10 bytes 

62994901510000C00004 

LCR, CheckSum and ETX 

439F03 

 

Decrypted Data: 

Track 1 decrypted 

%B4266841088889999^BUSH JR/GEORGE 

W.MR^08091011000011000000000460000000000000?1 

Track 2 decrypted 

;4266841088889999=08091011000004600000?0 

Track 3 decrypted 

;33333333337676760707077676763333333333767676070707767676333333333376767607070

7767676333333333376767607070707?2 

Track 1 decrypted data in hex including padding zeros (but there are no pad bytes here) 

2542343236363834313038383838393939395E42555348204A522F47454F52474520572E4D52

5E303830393130313130303030313130303030303030303034363030303030303030303030303

03F3100 

Track 2 decrypted data in hex including padding zeros 

3B343236363834313038383838393939393D30383039313031313030303030343630303030303

F30 

Track 3 decrypted data in hex including padding zeros 

3B333333333333333333333736373637363037303730373736373637363333333333333333333

337363736373630373037303737363736373633333333333333333333373637363736303730373

0373736373637363333333333333333333337363736373630373037303730373F3200 

 

 

Example: MSR Output USB HID/RS232/UART Interface, Format 2 

 

600198803F48236B03BF252A343236362A2A2A2A2A2A2A2A393939395E42555348204A52

2F47454F52474520572E4D525E2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A2A2A2A2A2A2A2A2A2A2A3F2A3B343236362A2A2A2A2A2A2A2A393939393D2A2A2

A2A2A2A2A2A2A2A2A2A2A2A2A3F2A26B03F2BD327CA087C159DEA3E77974A36B6E



 

 
Page 27 of 55 

 

89CB5BC85EF92D08FB01152089099FE2A348DF2BA8D7AFEF16A1F5F2CEA46946A92CD

C2AB3B750D1AEF8127995EE6A944E12F9DF40E46607F06C68E057DA05CC3BBB2BD68E

CE1D7D89A4671423C4F649082106A785A62D9382968BCF4CFD0ECE3CF33449F265542C

B4AE6240F99CDACD08E92744FFC04C683834EB4D04C9CB9D2A4B4A4FFE15F7C70169

C89288097C4B8BB42C67D33073CFEE68B95D0F88C6CF82F86BF8E7FE5909D1537103999

40C9DAD8BD26E929EE98BEBFA9D3C19AAC047B61E8ED56BE52D4A7F8B5FFFA01341

8AC88F65E1DB7ED4D10973F99DFC8463FF6DF113B6226C4898A9D355057ECAF11A5598

F02CA31688861C157C1CE2E0F72CE0F3BB598A614EAABB1629949011A000BE00003D70

3 

 

 

60, length(MSB, LSB), card type, track status, length track 1-length track 2- length track 3, mask 

clear status, crypt hash status 

60 0198 80 3F 48-23-6B 03BF 

0198 Total message length in hexadecimal 

3F Tracks 1-3 found and properly decoded 

48 Length of track 1 data is 48h (72 decimal) bytes 

23 Length of track 2 data is 23h (35 decimal) bytes 

6B Length of track 3 data is 6Bh (107 decimal) bytes 

03 indicates tracks 1 and 2 as masked 

BF Tracks 1-3 are encrypted, Tracks 1-3 are hashed, the KSN is included 

 

Track one masked track data displayed in hexadecimal 

252A343236362A2A2A2A2A2A2A2A393939395E42555348204A522F47454F52474520572E

4D525E2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A

2A2A3F2A 

Track two masked track data displayed in hexadecimal 

3B343236362A2A2A2A2A2A2A2A393939393D2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A3

F2A 

Track one encrypted track data displayed in hexadecimal 

26B03F2BD327CA087C159DEA3E77974A36B6E89CB5BC85EF92D08FB01152089099FE2

A348DF2BA8D7AFEF16A1F5F2CEA46946A92CDC2AB3B750D1AEF8127995EE6A944E12

F9DF40E 

Track two encrypted track data displayed in hexadecimal 

46607F06C68E057DA05CC3BBB2BD68ECE1D7D89A4671423C4F649082106A785A62D938

2968BCF4CF 

Track three encrypted track data displayed in hexadecimal 

D0ECE3CF33449F265542CB4AE6240F99CDACD08E92744FFC04C683834EB4D04C9CB9D

2A4B4A4FFE15F7C70169C89288097C4B8BB42C67D33073CFEE68B95D0F88C6CF82F86B

F8E7FE5909D153710399940C9DAD8BD26E929EE98BEBFA9D3C19AAC047B61E8ED56B

E52D4A7F8B5FFFA01 

First 20-bytes of track one data hashed 

3418AC88F65E1DB7ED4D10973F99DFC8463FF6DF 

First 20-bytes of track two data hashed 

113B6226C4898A9D355057ECAF11A5598F02CA31 

First 20-bytes of track three data hashed 



 

 
Page 28 of 55 

 

688861C157C1CE2E0F72CE0F3BB598A614EAABB1 

KSN 

629949011A000BE00003 

LRC and ETX 

D7 03 

 

Key Value: 14 81 3F 2E DA E0 EF C0 46 0B 08 AB FA D7 95 87 

KSN: 62 99 49 01 1A 00 0B E0 00 01 

Decrypted Data: 

%B4266841088889999^BUSH JR/GEORGE W.MR^0809101100001100000000046000000?! 

;4266841088889999=080910110000046?0 

;33333333337676760707077676763333333333767676070707767676333333333376767607070 

776767633333333337676760707?2 

Clear/Masked Data displayed in ASCII: 

Track 1: %*4266********9999^BUSH JR/GEORGE 

W.MR^*******************************?* 

Track 2: ;4266********9999=***************?* 

Key Value: 1A 99 4C 3E 09 D9 AC EF 3E A9 BD 43 81 EF A3 34 

KSN: 62 99 49 01 19 00 00 00 00 02 

Decrypted Data displayed in ASCII: 

%B4266841088889999^BUSH JR/GEORGE W.MR^0809101100001100000000046000000?! 

;4266841088889999=080910110000046?0 

;33333333337676760707077676763333333333767676070707767676333333333376767607070 

776767633333333337676760707?2 

Track 1 decrypted data in hex including padding zeros (but there are no pad bytes here) 

2542343236363834313038383838393939395E42555348204A522F47454F52474520572E4D52

5E303830393130313130303030313130303030303030303034363030303030303F21 

Track 2 decrypted data in hex including padding zeros 

3B343236363834313038383838393939393D3038303931303131303030303034363F300000000

000 

Track 3 decrypted data in hex including padding zeros 

3B333333333333333333333736373637363037303730373736373637363333333333333333333

337363736373630373037303737363736373633333333333333333333373637363736303730373

0373736373637363333333333333333333337363  

 

Example: Enhanced Manual Entry Output Format 

 

Keyed in PAN  5150710200107903 

Keyed in Expiration 0909 

Reader Output: (SecureKey Enhanced Key-In Format, USB-KB or PS2) 

 
029200C0170018000292;515071******7903=0909?*FBCE9EFFF7500011FA44

7DC93C11F3816BC7A37EED3CBD0464AB280F610A7035448E0888CDF683D6C5C3

2DBE629949003700006000161DB103 



 

 
Page 29 of 55 

 

 

Masked manually entered data: ;515071******7903=0909?* 

 

Key Value: D1 3F 0B D8 47 AA 1D 27 C1 1C F8 4C D8 66 6A 2E 

KSN: 62 99 49 00 37 00 00 60 00 16 

 

Decrypted Data: 

Data in ASCII Format  

;5150710200107903=0909?0 

 

Data in HEX Format  

3B353135303731303230303130373930333D303930393F30 

 

Example: Enhanced Manual Entry with ADR and ZIP Output  

 

Keyed in Admin # 5 

Keyed in PAN   45678901234567890123 

Keyed in Expiration 1234 

Keyed in CVV  9999 

Keyed in Address  88888888888888888888 

Keyed in ZIP  7777777777 

 

Reader Output: (SecureKey Enhanced Key-In Format, USB-HID) 

 
028700C03700202206923B343536372A2A2A2A2A2A2A2A2A2A2A393031323D33

3431323A2A2A2A2A3F2A3138383838383838383838383838383838383838383D

30373737373737373737373DEABBF052D8FBB29F2814B4AFEAE0DF6882ED8CF5

F8AEB2A92B7A956FC51802E2CB35058DBE3FB4C0DD85F200A4929722E815E743

6299490101000020000FA92703 

 

028700C0370020220692 

0087 Total message length in hexadecimal 

C0 Enhanced manual entry  

37 Tracks 2-3 found and properly decoded 

00 Length of track 1 data is 00h (0 decimal) bytes 

20 Length of track 2 data is 20h (32 decimal) bytes 

22 Length of track 3 data is 22h (34 decimal) bytes 

06 indicates tracks 2 and 3 as masked 

92 Tracks 2 is encrypted, Track 2 is hashed, the KSN is included 

 

Masked Keyed In Data: ;4567***********9012=3412:****?* 

Additional Data Fields: 188888888888888888888=07777777777= 

Key Value: EB 8B 4A 63 7E 9E A4 BB 5C 75 E7 99 8F FC 7A 8F 

KSN:     62 99 49 01 01 00 00 20 00 0F 



 

 
Page 30 of 55 

 

Decrypted Data in ASCII Format ;4567890123456789012=3412:9999?4 

Data in HEX Format  

3B343536373839303132333435363738393031323D333431323A393939393F34 

 

Example: MSR Output Format with TransArmor TDES-DUKPT 

 If track 1 and 2 are present, provide tracks 1+2 concatenated, with all sentinels, and encrypt 

that whole payload together, needs to be hex. 

 If only track 1 is present, provide track 1 with sentinels. Encrypted output must be in HEX. 

 If only track 2 is present, provide track 2 with sentinels. Encrypted output must be in HEX. 

020A01804F6B000081890112252A343236362A2A2A2A2A2A2A2A393939395E4255534820

4A522F47454F52474520572E4D525E303830392A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A2A2A2A2A2A2A2A2A2A2A2A3F3B343236362A2A2A2A2A2A2A2A393939393D3038303

92A2A2A2A2A2A2A2A2A2A2A3F8E3849FC2888238C069A2EEB7C3B61B9A60825BCA99

263F2C4030CB696867AC76A648C24080248BB59E3241984CC9C66F90AE28020EADED4C

3F6D6A7A84D560D5EA51FD3773086C0D9B0B0FFB09CC8B070B5316F66E5AA88A5F71

B061BD3616C549A38A14BD25259DC88BA9A0ED5E528E74BDBCE885CCB87AE9F1ECE

FA419792D226E7C100000000000000000000629949012C0004600001F50D03 

[Get:TDES] 

INITKEY:Key: 

0123456789ABCDEFFEDCBA9876543210 

[Data Format:Enhanced] 

[Card Type:ISO/ABA Card] 

[Encrypted Type:TDES] 

[TotalLength:266   [0A01]] 

Track Length: 

Track 1 Length:107 

Track 2 Length:0 

Track 3 Length:0 

Track 1-3 Status: 4F 

 track1 decode success, 

 track2 decode success, 

 track3 decode success, 

 track1 sampling success, 

 track2 sampling fail, 

 track3 sampling fail, 

 Field 10 ("optional byte length") exists 

Byte8:81 

Status byte 1: 

 Track1 Clear/Mask data present, 

 Track2 Clear/Mask data not present,  

 Track3 Clear/Mask data not present,  

 Encrypted Type :UN-AES   



 

 
Page 31 of 55 

 

 Encrypted Type : TDES  

 Key Type : DATA Key  

 Out Put Serial Number Enable 

Byte9:89 

Encrypted data sent status byte: 

 Track1 encrypted data present, 

 Track2 encrypted data not present, 

 Track3 encrypted data not present, 

 Track1 hash data present,  

 Track2 hash data not present,  

 Track3 hash data not present,  

 Session ID not Present(level 3), 

 KSN Present(encrypted), 

Byte 10: 01 

 Optional byte length: 1 

Byte 11: 12 

 SHA-1 

 Encryption type follows Field 11 bit 2 & 3 & 4 

 TransArmor TDES-DKUPT 

 No MAC Value Length 

 

Track1 Mask (Hex): 

252A343236362A2A2A2A2A2A2A2A393939395E42555348204A522F47454F52474520572E

4D525E303830392A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

A2A3F3B343236362A2A2A2A2A2A2A2A393939393D303830392A2A2A2A2A2A2A2A2A2

A2A3F 

Track2 Mask (Hex): 

 

Track3 Mask (Hex): 

 

Track1 Mask : 

%*4266********9999^BUSH JR/GEORGE 

W.MR^0809***************************?;4266********9999=0809***********? 

Track2 Mask : 

 

Track3 Mask : 

 

Track1 Encrypted Data Length:112 

Track2 Encrypted Data Length:0 

Track3 Encrypted Data Length:0 

Track1 Encrypted 

Data:8E3849FC2888238C069A2EEB7C3B61B9A60825BCA99263F2C4030CB696867AC76A

648C24080248BB59E3241984CC9C66F90AE28020EADED4C3F6D6A7A84D560D5EA51FD

3773086C0D9B0B0FFB09CC8B070B5316F66E5AA88A5F71B061BD3616C549A38A14BD2

5259DC88BA9A0ED5E528 

Track2 Encrypted Data: 



 

 
Page 32 of 55 

 

Track3 Encrypted Data: 

Track1 Hash: 

E74BDBCE885CCB87AE9F1ECEFA419792D226E7C1 

Track2 Hash: 

0000000000000000000000000000000000000000 

Track3 Hash: 

0000000000000000000000000000000000000000 

 

Serial Number: 

00000000000000000000 

 

 

 

ENCRYPTED EMV DATA 

Transaction data from chip-card interactions (here loosely described as "EMV data") will consist 

primarily of TLV (tag-length-value) triplets.  

 

Tags may be one or more bytes in length and are constructed according to standard ASN.1 Basic 

Encoding Rules, otherwise known as BER-TLV. (See discussion below.) Length is specified in 

one or more bytes using the rules described further below.  

 

"Tag data" can consist of embedded TLV blocks that embed more TLV blocks, etc. The ordering 

of TLV blocks, at a given level, is not significant. The actual number of TLV blocks returned can 

vary, based on card brand, transaction type, and potentially many other considerations. 

 

Not all TLV data will be encrypted. When TLVs are encrypted, packaging of contents will occur 

according to one of two schemes (Method One or Method Two), depending on whether or not 

you've specified the use of custom tag DFEF4B in your terminal settings. In Method One, track 

data and/or PAN data are encrypted in accordance with preferences specified in tag DFEF4B and 

the result placed in tag DFEF4D. (The data will not contain embedded tags; see further 

discussion under Method One below.) In Method Two, which is the default method if tag 

DFEF4B is not present in terminal settings, data for sensitive tags (such as tag 5A, 56, or 57, 

etc.) is padded, then the entire TLV is encrypted and embedded in a new TLV with the same tag 

name, as described under Method Two below. 

 

Encrypted TLV Packaging: Method One 

If the party that will be decrypting your data wants track data only, without any enclosing tags, 

select this method. The track data provided will be similar to the data provided in a traditional 

MSR transaction. 

 

To utilize this method, you must set your preferences in tag DFEF4B and supply that tag, as a 

terminal configuration setting, to the ID TECH reader. (See Appendix A for more information 



 

 
Page 33 of 55 

 

about tags DFEF4A, DFEF4C, and DFEF4D.) Once supplied, this tag does not need to be 

supplied again, unless your preferences change. (This is a one-time-only setting, in other words, 

unless you want or need to adjust it more dynamically.)  

 

Use tag DFEF4B to specify which track or tracks (1, 2, or 3) you want to receive data for; 

whether or not to enable sentinels for those tracks; whether or not you wish to (also) receive 

PAN data; and to control whether the default behavior is to return all requested tracks, or just the 

first track found. (Again, see Appendix A for more information on these configuration options.) 

Once DFEF4B has been configured, the reader will place the requested data (padded and 

encrypted) in tag DFEF4D. If you have chosen to retrieve multiple tracks of data, the tracks will 

be concatenated. To know their lengths, you will need to retrieve tag DFEF4C, which will 

contain the explicit lengths of any returned data blocks. 

 

Before encryption, the data payload in DFEF4D is zero-padded padded, as necessary, to a final 

length that's a multiple of 8 bytes (for TDES encryption) or a multiple of 16 bytes (for AES 

encryption). 

 

Encrypted TLV Packaging: Method Two 

Method Two is the default packaging for encrypted TLVs if tag DFEF4B has not been specified 

in terminal settings. 

 

Under this packaging methodology, when a TLV has been identified as requiring encryption, the 

entire TLV, including the tag and length, is first padded (as necessary), then encrypted, before 

being wrapped in a new instance of the (same) tag: 

 

 
 



 

 
Page 34 of 55 

 

After it has been padded and encrypted, the old TLV becomes the 'V' of a new instance of the 

tag, with a new length. The length is encoded according to special rules (as discussed below 

under Length Byte Semantics).  

 

Tag Encoding 

ID TECH transaction data will generally contain a mix of industry-standard EMV tags and 

proprietary ID TECH tags. ASN.1 Basic Encoding Rules apply in either case. (For information 

about EMV tags and their meanings, consult the EMV documentation at 

https://www.emvco.com.) 

 

Tags are constructed as follows:  

 

Byte 1: This is the first (and possibly only) value for the Tag.  

 If the bottom 5 bits are ON, then next byte is also part of the tag. In other words: 

 
   (firstByte & 0x1F == 0x1F) // TRUE means more tag bytes 

follow 

 

Byte 2 . . n (if necessary): 

 If the most significant bit (B7) is ON, then the next byte is also part of the tag: 

 
   (Byte & 0x80 == 0x80) // TRUE means more tag bytes follow 

 

Examples: 

 8F 02 03 04:  Tag = 8F, Length = 2, Data = 03 04 

 9F 02 03 04:  Tag = 9F02 (and Length = 3, Data = 04) 

 BF A2 92 82:  Tag = BFA292 

 

 

Length Byte Semantics 

The top bits of the first length byte have special significance. 

  

If the most significant bit (B7) of the first length byte is OFF, then that entire byte is the data 

length of the data to follow. (In this case, there is one and only one "length byte" to consider.) 

 

If the most significant bit (B7) is ON, then the lower nibble specifies the number of following 

bytes that encode the length of the data to follow. In other words, the lower nibble is the "length 

of the length." (E.g.: the lower nibble of 84 is 4, therefore the number of length bytes is 4.) 

 

Examples: 

 6F 12 13 14 15 […]  Tag is 6F, Length is 12, Data starts at 13. 

 9F 20 81 82 83 84 […]: Tag is 9F20, the lower nibble of 81 is 1 (therefore there is one 

length byte, with value 82), so data starts at 83. 

 DF 81 01 82 01 02 03 […]: Tag is DF8101, Length is the 2 bytes after 82, which is 

0x0102, so 258 bytes of data can be found starting at 03. 

https://www.emvco.com/


 

 
Page 35 of 55 

 

  

 

 

 

Using Length Byte to Denote Mask and/or Encryption: 
 

Bits 5, 6, and/or 7 of the first length byte are used in a special way when data are masked or 

encrypted: 

 

 Bit 7 will be set to 1. 

 Bit 6 will be set to 1 if there is encryption. 

 Bit 5 will be set to 1 if there is a mask (e.g., for track data). 

 Bits 0-4 signify the number of "length bytes" that follow. The actual length must be 

retrieved from the length bytes. 

 

Examples: 

 6F 12 13 14 15 . . .:  Tag is 6F, Length is 12, Data starts at 13, no mask/encryption. 

 9F 20 C1 82 83 84 . . .:  Tag is 9F20, Length is the 1 byte after C1, which is 0x82, data is 

encrypted, data starts at 83. 

 DF 81 01 A2 01 02 03 . . .:  Tag is DF8101, Length is the 2 bytes after A2, which is 

0x0102, data is masked, data starts at 03. 

 

The following are tags that will contain encrypted and/or masked data: 

 

Tags subject to encryption using Method Two 

Tag Data Object Note Plaintext Mask and 

format 

Encryption and 

format 

5A Application PAN   None Mask 

5A A1 Len 

<value> 

  

This Value will 

be masked 

according to 

PreCtlNum and 

PostCtlNum, 

then output. 

Encryption 

5A C1 Len 

<value> 

56 Track 1 Data 1. MasterCard-

Paypass 

(MagStripe) 

defines it. 

2. DiscoverZip 

defines it. 

3. Visa MSD –

not defined. 

None Mask1 

56 A1 Len 

<value> 

(Optional for 

Contact EMV) 

Encryption 

56 Cx Len 

<value> 



 

 
Page 36 of 55 

 

4. Amex not 

defined. 

5. PBOC– not 

defined. 

57 Track 2 

Equivalent Data 

  None Mask1 

57 A1 Len 

<value> 

(Optional for 

Contact EMV) 

Encryption 

57 Cx Len 

<value> 

5F20 Cardholder 

Name 

  Full Plaintext None None 

5F24 Expire Date   Full Plaintext None None 

5F30 Service Code   Full Plaintext None None 

9F1F Track 1 

Discretionary 

Data 

  None None Encryption 

9F 1F Cx Len 

<value> 

9F20 Track 2 

Discretionary 

Data 

  None None Encryption 

9F 20 Cx Len 

<value> 

9F6B Track 2 Data 1. MasterCard-

Paypass 

(MagStripe) 

defines it 

2. DiscoverZip – 

Do not Define. 

3. Visa MSD –

Define it for 

‘Card CVM 

Limit’. Now Do 

Not Encrypt it in 

Visa MSD. 

4. Amex – Do 

not Define. 

5. PBOC–Define 

it for ‘Card 

CVM Limit’. 

Now Do Not 

Encrypt it in 

PBOC. 

  

If it is used for 

Track2 Data. 

The value need 

be encrypted, 

then Output. 

  

None Mask1 

9F6B A1 Len 

<value> 

(Contactless 

MSD/EMV 

Only) 

Encryption 

9F 6B Cx Len 

<value> 



 

 
Page 37 of 55 

 

FFEE13 Track 1 Data 1. DiscoverZip 

Need Use it. 

2. Visa MSD 

Need Use it. 

3. Amex Need 

Use it. 

4. PBOC Need 

Use it. 

None Mask1 

FF EE 13 A1 

Len <value> 

(Contactless 

MSD Only) 

Encryption 

FF EE 13 Cx 

Len <value> 

FFEE14 Track 2 Data 1. DiscoverZip 

Need Use it. 

2. Visa MSD 

Need Use it. 

3. Amex Need 

Use it. 

4. PBOC Need 

Use it. 

None Mask1 

FF EE 14 A1 

Len <value> 

(Contactless 

MSD Only) 

Encryption 

FF EE 14 Cx 

Len <value> 

  
1Mask Data Note: 

Data for 9F6B, FFEE13, and FFEE14 are masked for Contactless MSD only. 

Values will be masked according to PreCtlNum and PostCtlNum settings in EMV, then output. 

 

Discretionary Data 

Tag Data Object Note Plaintext Mask and format Encryption and format 

DF812A DD Card Track 1 

  None None Encryption 

DF 81 2A Cx Len 

<value> 

DF812B DD Card Track 2 

  None None Encryption 

DF 81 2B Cx Len 

<value> 

DF31 DD Card Track 1 
  None None Encryption 

DF 31 Cx Len <value> 

DF32 DD Card Track 2 
  None None Encryption 

DF 32 Cx Len <value> 

  

 

 
Additional Encryption Information Tags (for applicable ViVOpay products) 

Tag Data Object Note Format 

DFEE26 

Encryption Status 

Information 

("Attribution 

bytes") 

  Byte 1: 

Bit 4/3/0: Captured Data Type 

0 0 0 = Contact Card 

0 0 1 = Contactless Card / EMV 

1 0 1 = Contactless Card / MSD 

0 1 x = MSR Card 

Bit 2/1: Encryption Mode 



 

 
Page 38 of 55 

 

0 0 = TDES 

0 1 = AES 

1 x = Refer to “Extended Encryption Mode” 

Bit 5: Reserved for Attribution Byte Extension. 

Bit 6/7: Encryption Status (For ViVOpay IDG) 

0 0 = MSR/MSD off, EMV off 

0 1 = MSR/MSD off, EMV on 

1 0 = MSR/MSD on, EMV off 

1 1 = MSR/MSD on, EMV on 

 

Byte 2: (Optional) 

Bit 3/2/1/0: Extended Encryption Mode 

0 0 0 0 = TDES 

0 0 0 1 = AES 

0 0 1 0 = TransArmor Algorithm 

0 0 1 1 = Voltage Algorithm 

0 1 0 0 = Visa FPE 

0 1 0 1 = Verifone FPE 

Bit 6~4: Reserved 

Bit 7: 
   0 = No MAC Verification Data 
   1 = Has MAC Verification Data 

 

 
Note:1. DiscoverZip has 56 Tag (Track 1 Data) and Formal Track1 & 2 Data (No Tags). So DiscoverZip will have 56, FF EE 13, 

FF EE 14 (3 Tags) later. 

2. Visa MSD, Amex, PBOC can have FF EE 13, FF EE 14 (2 Tags for Formal Track 1 & 2 Data). 

 

 

 

 

TLV Encrypted Response Format Examples 

Note on Masking 

Masked tags include: 

57: Optionally masked for Contact EMV 

56: Optionally masked for Contact EMV 

9F6B: Contactless MSD/EMV Only 

FFEE13: Contactless MSD Only 

FFEE14: Contactless MSD Only 

5A 

 



 

 
Page 39 of 55 

 

Configuration Note 

1. Set PrePANClrData (N) 

1 byte parameter, range is 0~6, default value 4 

 

2. Set PostPANClrData (M) 

1 byte parameter, range is 0~4, default value 4 

 

3. Set ExpireDateOutputOpt 

1 byte parameter, value is 0x30 (Mask) / 0x31 (Not Mask), default value 0x31 

 

4. Set MaskCharID (Mask Character) for Ascii Code Track Data 

1 byte parameter, range is 0x20~0x7E, default value 0x2A (*) 

 

5. Set MaskCharID (Mask Character) for Hex Code Track Data 

1 nibble parameter sent as byte value, range is 0x0A~0x0F, default value 0x0C 

 

6. In 57 Tag Value, the data before 0xDx is PAN data, to be Masked as Tag 5A Value. 

 

7. In 57 Tag Value, in the data 0xDy ym ms xz, yy mm is expiry date, and sxz is service code; 

they need not be Masked. 

 

8. In 57 Tag Value, the data after 0xDy ym ms xz are Other data, they need be Masked. 

 

Example: 

 

 ASCII Pan clear data:  “012345678912” 

 Pre-PAN clear data characters:  5 

 Post-PAN clear data characters:  3 

 Mask Character = “*” 

 Masked Value = “01234****912” 

 

Hex value clear data:  0x012345678912 

 Pre-PAN clear data characters:  5 

 Post-PAN clear data characters:  3 

 Mask Character = 0x0C 

 Masked Value = 0x01234CCCC912 

 

Tag5A Value Mask Configuration Note 

 

1. Set PrePANClrData (N) 

1 byte parameter, range is 0~6, default value 4 

 



 

 
Page 40 of 55 

 

2. Set PostPANClrData (M) 

1 byte parameter, range is 0~4, default value 4 

 

3. Set MaskCharID (Mask Character) for Ascii Code Value 

1 byte parameter, range is 0x20~0x7E, default value 0x2A (*) 

 

4. Set MaskCharID (Mask Character) for Hex Code Value 

1 byte parameter, range is 0x0A~0x0F, default value 0x0C 

 

Example 1 – TDES / AES mode for Tag5A 

1. Plaintext 5A TLV data (5A 08 47 61 73 90 01 01 00 10) 

 

2. Encrypt this TLV data (5A 08 47 61 73 90 01 01 00 10) to be 16 bytes Encrypted Data (XX 

XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX): 

 For TDES mode: The Length should be multiple of 8. If it was not multiple of 8, unit 

should zero padded y bytes data follow automatically (the length +y should be multiple 

of 8). 

 For AES mode: The Length should be multiple of 16. If it was not multiple of 16, unit 

should zero padded y bytes data follow automatically (the length +y should be multiple 

of 16). 

 

3. Re-Create New TLV data for Mask: 

 TAG is 5A 

 Length is A1 08: 

 A1 – Bit 7 is 1 note followed data length bytes. Bit 5 is 1 note data is Masked. Bit 0~4 (1) 

data note followed n bytes (1 byte) data length.  

 08 – followed 8 bytes data 

 Data is 47 61 CC CC CC CC 00 10 (0x0C is Mask Data) 

 

4. Re-Create New TLV data for Encryption: 

 TAG is 5A 

 Length is C1 10 (TDES/AES mode): 

 C1 – Bit 7 is 1 note followed data length bytes. Bit 6 is 1 note data is Encrypted. Bit 0~4 

(1) data note followed n bytes (1 byte) data length. 

 10 – followed 16 bytes data 

 Data is XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 

 

Example 2 – TransArmor mode for Tag5A 

1. Plaintext 5A TLV data (5A 08 47 61 73 90 01 01 00 10) 

 



 

 
Page 41 of 55 

 

2. Change Hex Value (47 61 73 90 01 01 00 10) to be Ascii Value (34 37 36 31 37 33 39 30 30 

31 30 31 30 30 31 30). We encrypt this ASCII Value data (34 37 36 31 37 33 39 30 30 31 30 31 

30 30 31 30) to be 344 bytes Encrypted Data (XX XX XX XX XX XX XX XX …………XX 

XX XX XX XX XX XX XX) 

 

3. Re-Create New TLV data for Mask: 

 TAG is 5A 

 Length is A1 08: 

 A1 – Bit 7 is 1 note followed data length bytes. Bit 5 is 1 note data is Masked. Bit 0~4 (1) 

data note followed n bytes (1 byte) data length.  

 08 – followed 8 bytes data 

 Data is 47 61 CC CC CC CC 00 10 (0x0C is Mask Data) 

 

4. Re-Create New TLV data for Encryption: 

 TAG is 5A 

 Length is C2 01 58 (344- TransArmor mode): 

 C2 - Bit 7 is 1 note followed data length bytes. Bit 6 is 1 note data is Encrypted. Bit 0~4 

(2) data note followed n bytes (2 byte) data length. 

 01 58 – followed 344 bytes data 

 Data is XX XX XX XX XX XX XX XX …………XX XX XX XX XX XX XX XX 

 

Example 3 – TDES / AES for Tag57 

1. Plaintext 57 TLV data (57 11 47 61 73 90 01 01 00 10 D1 51 22 01 17 58 98 93 89) 

 

2. Encrypt this TLV data (57 11 47 61 73 90 01 01 00 10 D1 51 22 01 17 58 98 93 89) to be 24 

(TDES mode) or 32 bytes (AES mode) Encrypted Data: 

 For TDES mode: The Length should be multiple of 8. If it was not multiple of 8, unit 

should zero padded y bytes data follow automatically (the length +y should be multiple 

of 8). 

 For AES mode: The Length should be multiple of 16. If it was not multiple of 16, unit 

should zero padded y bytes data follow automatically (the length +y should be multiple 

of 16). 

 

3. Re-Create New TLV data for Mask: 

 TAG is 57 

 Length is A1 11: 

 A1 – Bit 7 is 1 note followed data length bytes. Bit 5 is 1 note data is Masked. Bit 0~4 (1) 

data note followed n bytes (1 byte) data length.  

 11 – followed 17 bytes data 

 If ExpireDataOutputOpt was set “Output Plaintext”, expiry date and service code all Need 

Not be Masked. Data is 47 61 CC CC CC CC 00 10 D1 51 22 01 CC CC CC CC CC (0x0C 

is Mask Data): 

 47 61 73 90 01 01 00 10 is PAN, it Need be Masked same as 5A Tag Value 

 In D1 51 22 01, 1 51 2 is expiry date (2015year, December), 2 01 is service code, they all 



 

 
Page 42 of 55 

 

Need Not be Masked. 

 Followed them all Need be Masked. 

 If ExpireDataOutputOpt was set “Output Mask”, expiry date Need be masked,  service code 

Need Not be Masked. Data is 47 61 CC CC CC CC 00 10 DC CC C2 01 CC CC CC CC 

CC (0x0C is Mask Data): 

 47 61 73 90 01 01 00 10 is PAN, it Need be Masked same as 5A Tag Value 

 In D1 51 22 01, 1 51 2 is expiry date (2015year, December) and Need be Masked, 2 01 is 

service code and it Need Not be Masked. 

 Following them, all bytes Need be Masked. 

 

4. Re-Create New TLV data for Encryption (TDES mode): 

 TAG is 57 

 Length is C1 18: 

 C1 – Bit 7 is 1 note followed data length bytes. Bit 6 is 1 note data is Encrypted. Bit 0~4 

(1) data note followed n bytes (1 byte) data length. 

 18 – followed 24 bytes data 

 Data is XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 

XX XX XX XX 
 

Example 4 - TransArmor mode for Tag57 

1. Plaintext 57 TLV data (57 11 47 61 73 90 01 01 00 10 D1 51 22 01 17 58 98 93 89) 

 

2. Change Hex Value (47 61 73 90 01 01 00 10 D1 51 22 01 17 58 98 93 89) to be Ascii Value 

and Red item ‘D’ to be ‘=’ (0x3D) (34 37 36 31 37 33 39 30 30 31 30 31 30 30 31 30 3D 31 35 

31 32 32 30 31 31 37 35 38 39 38 39 33 38 39). Encrypt this Ascii Value data (34 37 36 31 37 33 

39 30 30 31 30 31 30 30 31 30 3D 31 35 31 32 32 30 31 31 37 35 38 39 38 39 33 38 39) to be 

344 bytes Encrypted Data (XX XX XX XX XX XX XX XX …………XX XX XX XX XX XX 

XX XX). 

 

3. Re-Create New TLV data for Mask: 

 TAG is 57 

 Length is A1 11: 

 A1 – Bit 7 is 1 note followed data length bytes. Bit 5 is 1 note data is Masked. Bit 0~4 (1) 

data note followed n bytes (1 byte) data length.  

 11 – followed 17 bytes data 

 If ExpireDataOutputOpt was set “Output Plaintext”, expiry date and service code all Need 

Not be Masked. Data is 47 61 CC CC CC CC 00 10 D1 51 22 01 CC CC CC CC CC (0x0C 

is Mask Data): 

 47 61 73 90 01 01 00 10 is PAN, it Need be Masked same as 5A Tag Value 

 In D1 51 22 01, 1 51 2 is expiry date (2015year, December), 2 01 is service code, they all 

Need Not be Masked. 

 Followed them all Need be Masked. 

 If ExpireDataOutputOpt was set “Output Mask”, expiry date Need be masked,  service code 

Need Not be Masked. Data is 47 61 CC CC CC CC 00 10 DC CC C2 01 CC CC CC CC 



 

 
Page 43 of 55 

 

CC (0x0C is Mask Data): 

 47 61 73 90 01 01 00 10 is PAN, it Need be Masked same as 5A Tag Value 

 In D1 51 22 01, 1 51 2 is expiry date (2015year, December) and Need be Masked, 2 01 is 

service code and it Need Not be Masked. 

 Followed them all Need be Masked. 

 

4. Re-Create New TLV data for Encryption (TDES mode): 

 TAG is 57 

 Length is C2 01 58 (344- TransArmor mode): 

 C2 - Bit 7 is 1 note followed data length bytes. Bit 6 is 1 note data is Encrypted. Bit 0~4 

(2) data note followed n bytes (2 byte) data length. 

 01 58 – followed 344 bytes data 

 Data is XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 

XX XX XX XX, or XX XX XX XX XX XX XX XX XX XX XX XX ………… XX XX XX 

XX XX XX XX XX XX XX XX XX 
 

Example 5 – TDES / AES mode 

 If all TLVs are same level. 

Raw data: 57 11 47 61 73 90 01 01 00 10 D1 51 22 01 17 58 98 93 89 5A 08 47 61 73 90 01 01 

00 10 84 07 A0 00 00 00 03 10 10 9F 20 05 01 94 60 02 7F 
New data: 57 A1 11 47 61 CC CC CC CC 00 10 D1 51 22 01 CC CC CC CC CC 57 C1 18 

XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 

XX 5A A1 08 47 61 CC CC CC CC 00 10 5A C1 10 XX XX XX XX XX XX XX XX XX XX 

XX XX XX XX XX XX 84 07 A0 00 00 00 03 10 10 9F 20 C1 08 XX XX XX XX XX XX XX 

XX 
 

 If all TLVs are not same level (e.g., Paypass application list Record). 

Raw Data:  

<FF 81 06 (Tag00)> <82 01 70 (Len00)> <TLV10> <TLV11>  

<FF 81 01 (Tag12)> <7F (Len12)> <TLV20> <TLV21> 57 11 47 61 73 90 01 01 00 10 D1 51 

22 01 17 58 98 93 89 5A 08 47 61 73 90 01 01 00 10 84 07 A0 00 00 00 03 10 10 9F 20 05 01 

94 60 02 7F < TLV23 > … <TLV2n>  

<FF 81 01 (Tag13)> <7F (Len13)> <TLV20> <TLV21> 57 11 47 61 73 90 01 01 00 10 D1 51 

22 01 17 58 98 93 89 5A 08 47 61 73 90 01 01 00 10 84 07 A0 00 00 00 03 10 10 9F 20 05 01 

94 60 02 7F < TLV23 > … <TLV2n>  

<TLV14> … <TLV1n> 

<FF 81 05 (Tag01)> <60 (Len01)> <TLV10> <TLV11> 57 11 47 61 73 90 01 01 00 10 D1 51 

22 01 17 58 98 93 89 5A 08 47 61 73 90 01 01 00 10 84 07 A0 00 00 00 03 10 10 9F 20 05 01 

94 60 02 7F <TLV13> <TLV14> … 

 

New data: 

<FF 81 06 (Tag00)> <82 01 D5 (Len00)> <TLV10> <TLV11>  

<FF 81 01 (Tag12)> <81 B0 (Len12)> <TLV20> <TLV21> 57 A1 11 47 61 CC CC CC CC 

00 10 D1 51 22 01 CC CC CC CC CC 57 C1 18 XX XX XX XX XX XX XX XX XX XX XX 



 

 
Page 44 of 55 

 

XX XX XX XX XX XX XX XX XX XX XX XX XX 5A A1 08 47 61 CC CC CC CC 00 10 

5A C1 10 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 84 07 A0 00 00 00 

03 10 10 9F 20 C1 08 XX XX XX XX XX XX XX XX < TLV23 > … <TLV2n>  

<FF 81 01 (Tag13)> <81 B0 (Len13)> <TLV20> <TLV21> 57 A1 11 47 61 CC CC CC CC 

00 10 D1 51 22 01 CC CC CC CC CC 57 C1 18 XX XX XX XX XX XX XX XX XX XX XX 

XX XX XX XX XX XX XX XX XX XX XX XX XX 5A A1 08 47 61 CC CC CC CC 00 10 

5A C1 10 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 84 07 A0 00 00 00 

03 10 10 9F 20 C1 08 XX XX XX XX XX XX XX XX <TLV24> … <TLV2n>  

<TLV14> … <TLV1n> 

<FF 81 05 (Tag01)> <91 (Len01)> <TLV10> <TLV11> 57 A1 11 47 61 CC CC CC CC 00 10 

D1 51 22 01 CC CC CC CC CC 57 C1 18 XX XX XX XX XX XX XX XX XX XX XX XX 

XX XX XX XX XX XX XX XX XX XX XX XX 5A A1 08 47 61 CC CC CC CC 00 10 5A C1 

10 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 84 07 A0 00 00 00 03 10 

10 9F 20 C1 08 XX XX XX XX XX XX XX XX <TLV14> <TLV15> … 

 

KSN in TLV format 

1. It only exists in TDES or AES mode. 
2. 3 bytes KSN Tag – DF EE 12. 

3. 1 byte Len – 0A 

4. 10 bytes KSN 

 

 

KID in TLV format 

KeyID (KID) exists in TransArmor mode (TransArmor - KID). Otherwise, for AES or 

TDES encryption, KSN will be supplied. (See above.) 

 

3 bytes KID Tag – DF EE 12. 

 

1 byte Len – 0B (TransArmor-KID-Length) 

Value - 11 bytes (TransArmor-KID-Value) 

 

Contact L2 Response Format 

06 + <Transaction Result > <Attribution> [<TLV>] >] [<DFEF48> <IndicatorLen> 

<IndicatorValue>] [<MAC Verification Data TLV > <MAC Verification KSN TLV>] 

 

Or  

 

In response to Retrieve Transaction Result Command: 



 

 
Page 45 of 55 

 

06 + [<TLV>] [<DFEF48> <IndicatorLen> <IndicatorValue>] [<MAC Verification Data TLV > 

<MAC Verification KSN TLV>] 

 

Where: 

1. Transaction Result: 2 bytes (Approve, Decline, Other) 

2. Attribution: 1 Byte 

Bit 4/3/0: Captured Data Type 

0 0 0 = Contact Card 

0 0 1 = Contactless Card / EMV 

1 0 1 = Contactless Card / MSD 

0 1 x = MSR Card (For ViVOpay IDG) 

 

Bit 2/1: Encryption Mode 

0 0 = TDES 

0 1 = AES 

1 x = Refer to Tag DFEE26 Byte 2 field “Extended Encryption Mode.” 

 
Bit 5: Attribution Byte Extension in Encryption Information Tag DFEE26. 

0 = Tag DFEE26 with 1 byte, same as the “Attribution Byte.” 

1 = Tag DFEE26 with 2 or more bytes, extension of the “Attribution Byte.” 

 

Bit 6/7: Encryption Status (For ViVOpay IDG) 

0 0 = MSR/MSD off, EMV off 

0 1 = MSR/MSD off, EMV on 

1 0 = MSR/MSD on, EMV off 

1 1 = MSR/MSD on, EMV on 

 

3. <TLV> is optional only if transaction was Approved or Declined 

<TLV> will include KSN as first tag (DFEE12) while Encryption mode is TDES/AES. 

Encryption (bit 6) and Masking (bit5) flags will be utilized as appropriate in the Length 

component of the TLV element 

4. [<DFEF48> <IndicatorLen> <IndicatorValue>]: 

<DFEF48> is Indicator Tag 

<IndicatorLen> is Indicator Length, variable. 

<IndicatorValue> are Tags which were not output due to insufficient RAM. 

Note: Please refer to Section “Buffer not enough examples for EMV L2.” 

5. [<MAC Verification Data TLV > <MAC Verification KSN TLV>] is only valid for SRED & 

Output MAC Verification Data Option is On; please refer to Section “ MAC Verification Data 

Format” below. 

 

Contactless L2 Response Format 

06 + <Status Code > <Error Code >< Attribution > [<TLV>] [<MAC Verification Data TLV> 

<MAC Verification KSN TLV>] 

 



 

 
Page 46 of 55 

 

Where: 

1. Status Code: 1 Byte. The usage is the same as in KioskII/KioskIII project and are used to 

specify if transaction was approved or declined. 

2. Error Code: 1 Byte. The usage is the same as in KioskII/KioskIII project and are used to specify 

if transaction was approved or declined. 

3. Attribution: 1 Byte 

 Bit 4/3/0: Captured Data Type 

0 0 0 = Contact Card 

0 0 1 = Contactless Card / EMV 

1 0 1 = Contactless Card / MSD 

0 1 x = MSR Card (For ViVOpay IDG) 

 Bit 2/1: Encryption Mode 

0 0 = TDES 

0 1 = AES 

1 x = Refer Tag DFEE26 Byte 2 field “Extended Encryption Mode”. 
 Bit 5: Attribution Byte Extension in Encryption Information Tag DFEE26 

0 = Tag DFEE26 with 1 byte, same as the “Attribution Byte”. 

1 = Tag DFEE26 with 2 or more bytes, extension of the “Attribution Byte”. 

 Bit 6/7: Encryption Status (For ViVOpay IDG) 

0 0 = MSR/MSD off, EMV off 

0 1 = MSR/MSD off, EMV on 

1 0 = MSR/MSD on, EMV off 

1 1 = MSR/MSD on, EMV on 

4. <TLV> is optional only if transaction was Approved or Declined 

<TLV> will include KSN as first tag (DFEE12) if encryption mode is TDES/AES. 

Encryption (bit 6) and Masking (bit5) flags will be utilized as appropriate in the Length 

component of the TLV element 

6. <MAC Verification Data TLV > <MAC Verification KSN TLV> please refer to Section 

“MAC Verification Data” below. 

 

MAC Verification Data / KSN TLV Format 

<DFEFF41> <10> <MAC Value> <DFEFF42> <0A> <MAC Key KSN> 

 

Where: 

 <DFEFF41> is the Tag for MAC Verification Data 

 <10> is length of <MAC Value> 

 <MAC Value> is 16 bytes – MAC value is MAC-Device (Please refer next Section). The 

msgX is: 

 For Contact L2: “06 + <Transaction Result > <Attribution> [<TLV>] <DFEFF41> <10> 

” 

 For Contactless L2: “06 + <Status Code > <Error Code > < Attribution > [<TLV>] 

<DFEFF41> <10>” 

 <DFEFF42> is the Tag for MAC Verification KSN 

 <0A> is length of <MAC Key KSN> 



 

 
Page 47 of 55 

 

 <MAC Key KSN> is 10 bytes – MAC DUKPT Key KSN 

 

MAC-Device 

The HMAC result (16 bytes) is used to authenticate messages sent from Device to Host. 

 

MAC-Device = HMAC (MAC_KEY, msgX)  

Following is MAC_DUKPT_KEY_KSN 

 

The MAC-Device will be the last field in a message and msgX will include data starting from the 

first byte of message being built (Response Data + <DFEFF41> <10>) up to (but not including) 

the MAC-Device first byte. 

 

Advancing the KSN is controlled by Device. 

 

HMAC(MAC_KEY, msgX) = H ((MAC_KEY ⊕ opad) | H((MAC_KEY ⊕ ipad) | msgX)) 
 

Use HMAC-SHA256 (Refer to RFC2104); retain the left 16 bytes of the calculation to for MAC 

Authentication. 

 

Where 

H is a cryptographic hash function (in this case, SHA-256), 

K is a Current MAC Key padded to the right with extra zeros to the input block size of the hash 

function (64 bytes, in this case), or the hash of the original key if it's longer than that block size, 

msgX is the message to be authenticated, 

| denotes concatenation, 

⊕ denotes XOR, 

opad is the outer padding (0x5c5c5c…5c5c, one-block-long hexadecimal constant), 

ipad is the inner padding (0x363636…3636, one-block-long hexadecimal constant). 

 

 

 

Example of HMAC 

 

Suppose the data to be hashed with HMAC is 0123456789012345, and the key is 

0123456789ABCDEFFEDCBA9876543210. The calculation of HMAC proceeds as follows. 

 

H( (K' ⊕ opad) ‖ H( (K' ⊕ ipad) ‖ m) ) 

 

K' is  

0123456789ABCDEFFEDCBA9876543210000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000 

 

ipad is  



 

 
Page 48 of 55 

 

363636363636363636363636363636363636363636363636363636363636363636363636363636

36363636363636363636363636363636363636363636363636 

 

K' ⊕ ipad is  

37157351BF9DFBD9C8EA8CAE40620426363636363636363636363636363636363636363636

363636363636363636363636363636363636363636363636363636 

 

m is  

0123456789012345 

 

K' ⊕ ipad ‖ m is  

37157351BF9DFBD9C8EA8CAE40620426363636363636363636363636363636363636363636

3636363636363636363636363636363636363636363636363636360123456789012345 

 

H(K' ⊕ ipad ‖ m) is  

c6f3b8a5fcbf7c77b44b73a87f81a02cfd6b8be138efcdf184427b8880abb691 

 

opad is  

5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C

5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C 

 

K' ⊕ opad is  

5D7F193BD5F791B3A280E6C42A086E4C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C

5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C 

 

(K' ⊕ opad) ‖ H( (K' ⊕ ipad) ‖ m) is  

5D7F193BD5F791B3A280E6C42A086E4C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C

5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5C5Cc6f3b8a5

fcbf7c77b44b73a87f81a02cfd6b8be138efcdf184427b8880abb691 

 

H( (K' ⊕ opad) ‖ H( (K' ⊕ ipad) ‖ m) ) is  

b8682749f16accceedf9c859869f6d7c305d8e8df3820ab063b61b229d4cefa8 

 

For ID TECH products, retain only the first 16 bytes (32 hex nibbles) of the final result. 

 

DFEF48 (Insufficient RAM) Examples  

Example 1 – EMV L2 Transaction Result 

The response body of EMV L2 Transaction Result: 
06 + <Transaction Result > <Attribution> <5A C2 01 58 xx xx xx 

…… xx xx xx> <9F 1F C2 01 58 xx xx xx …… xx xx xx> <TLV1> <TLV2> 

… <TLVn> <DF EF 48 06 9F 20 57 56 9F 6B> 



 

 
Page 49 of 55 

 

Means – There are not enough RAM resources to output 4 Tags (9F20, 57, 56 and 9F6B). Please 

send “Retrieve Transaction Result” command (72 46 07 01 <2 Byte Length> <Tags>) with 4 

tags to retrieve them. 

  

Example 2 – Retrieve Transaction Result for EMV L2 

Terminal sends “Retrieve Transaction Result” command (72 46 07 01 <2 Byte Length> <Tags>) 

with 4 tags (9F20, 57, 56 and 9F6B). 

 

The response body is: 
06 + <9F 20 C2 01 58 xx xx xx …… xx xx xx> <57 C2 01 58 xx xx xx 

…… xx xx xx> <DF EF 48 03 56 9F 6B> 

Means – There are not enough RAM resources to output 2 Tags Value (56 and 9F6B). Please 

send “Retrieve Transaction Result” command (72 46 07 01 <2 Byte Length> <Tags>) with 2 

tags to retrieve them. 

 

Example 3 – Retrieve Transaction Result again for EMV L2 

Terminal sends “Retrieve Transaction Result” command (72 46 07 01 <2 Byte Length> <Tags>) 

with with 2 tags (56 and 9F6B). 

 

 

The response body is: 
06 + <56 C2 01 58 xx xx xx …… xx xx xx> <9F 6B C2 01 58 xx xx xx 

…… xx xx xx> 

Means – There are enough RAM resources to output all values. 

  



 

 
Page 50 of 55 

 

Appendix A: Tags DFEF4B, DFEF4C, & DFEF4D 

ID TECH proprietary tags DFEF4B, DFEF4C, and DFEF4D provide a way for track data (and 

optionally, PAN data) to be supplied in conjunction with an EMV transaction, with or without 

sentinels, in a form similar to the form track data would take in a conventional MSR transaction. 

 

Tag DFEF4B 

Tag DFEF4B is a configuration tag. Use it to tell your ID TECH reader which tracks you want to 

receive in tag DFEF4D, whether or not to use sentinels, and whether or not to include the PAN 

as a separate string.  

 
Byte 1: 

8 7 6 5 4 3 2 1 NOTES 

- - - - - - - X 0 – Disable Track 3 Sentinels 

1 – Enable Track 3 Sentinels 

- - - - - - X - 0 – Disable Track 2 Sentinels 

1 – Enable Track 2 Sentinels 

- - - - - X - - 0 – Disable Track 1 Sentinels 

1 – Enable Track 1 Sentinels 

- - - - X - - - 0 – Disable Track 3 

1 – Enable Track 3 

- - - X - - - - 0 – Disable Track 2 

1 – Enable Track 2 

- - X - - - - - 0 – Disable Track 1 

1 – Enable Track 1 

- X - - - - - - 0 – Disable PAN 

1 – Enable PAN 

X - - - - - - - 0 – All Data Elements Found 

1 – Only First Element Found 

Byte 2: RFU 

Byte 3: RFU 

 

 

You can use the top bit of the first byte of DFEF4B to control search behavior: If the bit is OFF, 

all data elements requested will be provided (if they exist). If the bit is ON, only the first element 

found will be retrieved and placed in DFEF4D. 

 

If you request multiple data items, they will be concatenated. To know the original lengths of the 

items, you must retrieve and inspect Tag DFEF4C (see below). 



 

 
Page 51 of 55 

 

To use tag DFEF4B, add it (as a TLV) to your terminal configuration settings. Send the settings 

to your device as you normally would. (For example, in ID TECH's Augusta, use command 72 

46 02 03 to Set Terminal Settings.)  

 

NOTE: If this tag does not exist in Terminal Settings, tags DFEF4C and DFEF4D will not be 

generated. 

 

The default value of this tag is 0x12 (Track 2 enabled, with Sentinels). 

 

Data Search Order 

When "Only First Element Found" (bit 8 = 1) is set in DFEF4B, Tag DFEF4D will be populated 

with a single data element according to the following search order 

 

Track 2, Tag 57 (converted to alpha numeric format) 

Track 2, Tag 9F6B 

Track 2, Tag 5F22 

Track 1, Tag 56 

Track 1, Tag 5F21 

PAN, Tag 5A (converted to alpha numeric format) 

Track 3, Tag 58 

Track 3, Tag 5F23  

 

Regardless of the original format, the data will be placed in the DFEF4D tag in alpha numeric 

format, such that after decryption (and with padding removed) the data will look similar to: 

 

3b343736313733393030313031303031303d31353132323031313134333837383038393f 

 

Which means that after rendering it as ASCII, it would look like: 

 

;4761739001010010=15122011143878089? 

 

When "All Data Elements Found" (BIT 8), is specified in DFEF4B, Tag DFEF4D will be 

populated with a single instance of each requested data element, according to the following 

order: 

 
Track 1 requested (bit 6 = 1). Includes first instance of: 
 

Tag 56 = Track 1 Equivalent  

Tag 5F21 = Track 1, identical to the data coded 
 
Track 2 requested (bit 5 = 1). Includes first instance of: 
 

Tag 57 = Track 2 Equivalent (converted to alpha numeric format) 

Tag 9F6B = Track 2 Data 

Tag 5F22 = Track 2, identical to the data coded 
 



 

 
Page 52 of 55 

 

Track 3 requested (bit 4 = 1). Includes first instance of: 
 

Tag 58 = Track 3 Equivalent 

Tag 5F23 = Track 3, identical to the data coded 
 
PAN requested (bit 7 = 1). Includes: 
 

Tag 5A = PAN (converted to alpha numeric format) 

 

Sentinels 

 

For any found data element of Track1, Track2 or Track3, sentinels will be included or not 

included according to the preferences set in bits 1, 2 and 3. 

 

Compressed Numeric Elements 

For any data element captured as compressed numeric, the following rules shall apply: 

 

Padding (0xf) shall not be included 

Center separators: 0xd shall be converted to 0x3d ("=") 

Data shall be encoded as ASCII representation of binary data  

example 0x123f = 0x313233 = "123" (ignore padding) 

example 0x1234 = 0x31323334 = "1234"  

example 0x123d456f = 0x3132333d343536 = "123=456"  

 

 

Tag DFEF4C 

This tag's 6-byte value provides the native lengths of tracks 1, 2, and 3, and the PAN (if 

applicable). Two bytes are reserved for future use. 

 

<Track 1 Length><Track 2 Length><Track 3 length><PAN length><RFU><RFU> 

 

A length of 0 indicates track disabled in DFEF4B or data not available. This tag also serves as 

an indicator of which data element was found first, when "Only First Element Found" is enabled 

in DFEF4B. 

 

 

Tag DFEF4D 

This variable-length tag contains track and/or PAN data, encrypted. The exact contents will vary 

depending on values supplied previously in DFEF4B (see above).  

 

When TDES or AES encryption have been used in conjunction with traditional DUKPT, decrypt 

the data normally, using the 10-byte KSN found in tag DFEE12. 

 



 

 
Page 53 of 55 

 

When TransArmor PKI (RSA) data are present, decrypt with the KeyID value in DFEE12 and 

Terminal ID found in 9F1C. 

 

(Note: Each track encoded with TransArmor RSA will be encrypted to 344 bytes.)   



 

 
Page 54 of 55 

 

 

Revision History 

 

Revision 

 

Description and Reason for Change Date By 

Rev 50/A  Initial Draft 

 

1-26-2016 KT 

B  Edit to Section 5 to remove reference to IDG. Also, fix 

"Field 11 is always empty" to say Field 12 is always empty. 

Increment the two following references to match earlier 

table. 

2-19-2016 KT 

C Revised tables to show that tag 56 and 57 data are masked, 

and also FFEE13, FFEE14, 9F6B are masked. 

 

Substitute "captured data type" for "card type" where 

appropriate. 

 

Updated references to Attribution Byte (and/or DFEE26) to 

reflect the latest bit-4 semantics. 

 

"Magstripe data (MSD) constructed from contactless 

interactions are treated as MSR data" changed to say 

"Magstripe data (MSD) constructed from contactless 

interactions are treated as EMV data." 

 

5/27/2016 Added changes for tags 56, 57, 9F 

 

6/21/2016 Clarified treatment of bit 5, field 8, of MSR data. 

 KT 

D Added updates related to TransArmor crypto support. 

Added updates for MAC support. 

P/N of this document updated to 80000502-001 

 

8/5/2016 

8/16/2016 

9/6/2016 

KT 

KT 

E Added DFEF48 tag (insufficient RAM) with examples. 

Added detailed example of HMAC calculation. 

Document now aligns with 66A of ICC and 67 of EEMSR. 

9/23/2016 KT 



 

 
Page 55 of 55 

 

F Add tags DFEF4B, DFEF4C, DFEF4D (new encryption 

tags). 

10/03/2016 

 

KT 

G Add support for TransArmor TDES (symmetric key) 

encryption. 

11/20/2017 KT 

 


